A Comparative Study Between Grape (Vitis vinifera) Juice Varieties on Liver Toxicity Induced by Sodium Fluoride in Adult Rats

Naglaa A. EL- Sheikh, Abeer A. Khedr and Alaa H. Nofal

Department of Nutrition and Food Sciences, Faculty of Home Economics, Menoufia University, Shibin El- Kom, Egypt

ABSTRACT

The consumption of fruits has an important role in health protection. Grape juice is considered a healthy protecting beverage due to its high content of bioactive phenolic compounds and their antioxidant capacity. The present study was designed to compare the potential effects of three types of grape juice (Green or white-red and black) against the toxicity and tissues damage induced by sodium fluoride (NaF) in rats liver. Rats were randomly divided into five groups. The first: negative control group (6 rats) fed standard diet. From 2 to 5 group received a single oral dose 10.3 mg NaF/kg body weight for six weeks, the second group served as positive control group (6 rats), the third, fourth and fifth groups (12 rats/each) were fed standard diet and each of them was divided into two sub groups (6 rats/each) and given a daily oral dose 5 and 10 μL/g body weight for 6 weeks of the green (white), red and black grape juice respectively. After the end of the experimental period, lipids profile, liver functions, Malonaldehyde (MDA) levels, reduced glutathione (GSH Rd) and catalase (CAT) activities and histological examination of liver tissues were performed. Results showed that NaF treated rats caused elevation in lipid profile, liver functions in the serum and MDA levels with reduction in the activity of GSH Rd and CAT in liver tissues. However, treatment sodium fluoride rats with red and black grape juice reduced the levels of lipid profile, liver enzymes and MDA with enhanced activity of GSH Rd, CAT and histopathological changes in the liver tissues. While, treated rats with black grape juice (10μl/g BW) was more effective in alleviating the harmful effects of NaF in rats. In conclusion, red and black grape juice has a potent effect against NaF induced hepatotoxicity in rats and this effect might be correlated with grape antioxidant capacity.

Key words: liver toxicity, sodium fluoride, red and black grape juice, liver functions.

Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. December 2016 (48) 1
INTRODUCTION

Fluorinated compounds such as sodium fluoride, sodium fluorosilicate and cryalite (a fluoride-containing mineral) are used in various insecticide formulations and wood preservatives (Nabavi et al., 2012). Fluoride, an essential trace element is widely distributed in nature as its compounds or free ions. Fluorosis in human beings is mainly caused by drinking water, toothpaste, mouth rinses, burning cool, NaF dust and fumes from industries using NaF-canting salt and hydrofluoric acid, and drinking tea (Liu et al., 2003). Fluoride easily distributes in the body through blood circulation, crosses the cellular membrane and its subsequent accumulation leads to impairment in the soft tissues (Bouaziz et al., 2010). Excessive intake of fluoride causes adverse health effects such as fluorosis in mammals and other toxic effects on cultured tissues (He and Chen, 2006 and GAO et al., 2009b). Also the excessive exposure to fluoride can lead to some toxicological risks as fluoride intoxication is associated with severe damage to different tissues (Nabavi et al., 2012 ab).

Chronic fluorosis may induce hyperlipidemic effect (Khudiar and Aldabaj, 2014) metabolic, functional and structural damages in many tissues including kidney (Nabavi et al., 2013) and liver (Grucka-Mamczar et al., 2009). Fluoride-induced hepatotoxicity is associated with an imbalance in the oxidant antioxidant systems of hepatic tissues causes hepatic dysfunction through free radicals mediated lipid peroxidation, DNA damage, inflammation, mitochondrial dysfunction and necrotic/apoptotic cell death (Wang et al., 2000 and Nabavi et al., 2012c).

The human diet, which contains many natural compounds in essential in protecting the body against the development of diseases. Human diet rich in vegetables and fruits have been associated with reduced rate of liver diseases (Alimi et al., 2012). Grapes are one of the most valued conventional fruits in the world.
A Comparative Study Between Grape (Vitis vinifera) Juice Varieties on Liver Toxicity Induced by Sodium Fluoride in Adult Rats

Naglaa A. EL- Sheikh, Abeer A. Khed and Alaa H. Nofal

(Yang and Xian, 2013) and contain various nutrient elements such as vitamins, minerals, carbohydrates, edible fibers and phytochemicals. Grape juice is a fresh and nutritional beverage, highly appreciated worldwide, which its production is significantly increasing every year (Koyama et al., 2014). Phenolic compounds of the grape juice such as flavonoids, anthocyanins, tannins, phenolic acids, among others, are the main responsible for the beneficial healthy effects observed (Capanoglu et al., 2013). Montvale (2002) showed that red grape juice has hepatoprotective effect. Also, it is protective or therapeutic agent to attenuate organs damage and dysfunction in response to chemical toxins (Alnahdi and Ayaz, 2012). Black grape can provide protection against toxic effects (Lakshmi et al, 2013). Grape juices which are rich in polyphenol compounds with important antioxidant activity have protective effect against oxidative damage in the liver (Rodrigues et al., 2013).

Therefore, the present study was carried out to evaluate the protective effects of grape juice varieties on liver toxicity induced by sodium fluoride in rats.

MATERIALS &METHODS

Materials:
Grape fruit (vitis vinifera): The fresh green (white), red and black grape used in this study were purchased from the local market Shiben El-Kom City Menoufia Government, Egypt. Sodium Fluoride (Naf) was obtained from sigma Chemical Co. (St. Louis, Mo. USA). Kits for estimating biochemical analysis were purchased from Alkan Medical Company, St. El-Doky, Cairo, Egypt.
Animals: Forty eight adult male albino rats, Sprague Dawley stain, weighing 160 ± 5g were purchased from Medical Insects Research Institute, Doki, Cairo, Egypt.

Methods:
Preparation of grape juice
Fresh grape was washed with running water. Grape juice was prepared using National
juicer (MJ - 176N Japan) without adding water. The pure filtrated juice was stored at -20 °C until used.

**Experimental design**

Forty eight rats were housed separately in well aerated cages under hygienic laboratory conditions and fed standard diet for 7 days for adaptation according to AIN - 93 guidelines (Reeves et al., 1993). Then rats were randomly divided into five groups; the first: negative control group (6 rats) was fed standard diet. From 2 to 5 groups received the standard diet and a single oral dose of 10.3 mg Naf /kg body weight for six weeks as described by Blaszczyk et al., (2011), the second group served as positive control group (6 rats), the third, fourth and fifth groups (12 rats /each) on the standard diet were divided into two sub groups (6 rats /each) and given a daily oral dose 5 and 10 μL/g body weight for 6 weeks of green (white), red and black grape juice respectively. The doses of green (white), red and black grape juice was determined according to Park et al., (2003). At the end of the experimental period rats were anesthetized after fasting for 12h and non-heparinized blood samples were collected from the hepatic portal vein. Liver was taken and washed in saline solution until all blood was removed. The serum was collected from the blood samples by centrifugation and both serum and liver were kept frozen at -20°C till used for analysis.

**Chemical analysis:**

Total phenolics were determined according to the Folin - Ciocalteau method as described by Kaškonienė et al., (2009). Total phenolic compounds were expressed as mg gallic acid equivalents /100 ml grape juice extract. Total Flavonoid was determined using a method described by Xu and chang (2007). Anthocyanin was determined according to Lako et al., (2007).

**Biochemical analysis:**

The serum levels of total lipids, total cholesterol (TC), triglyceride (TG) and high density lipoprotein (HDL.c) were determined by using...
methods of Frings and Dunn (1979), Allain et al., (1974), Fossati and Prencipe (1982) and Demacker et al., (1980) respectively. The determination of low density lipoprotein cholesterol (LDL.c) and very low density lipoprotein cholesterol (VLDL.c) were carried out according to the methods of Lee and Nieman (1996) as follows:

\[
\text{LDL.c} = \text{Total cholesterol} - (\text{HDL.c} + \text{VLDL.c})
\]

\[
\text{VLDL.c} = \frac{\text{TG}}{5}
\]

Serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) enzymes were assayed by the methods of Moss and Henderson (1999). The activity of alkaline phosphatase (Alp), gamma glutamine transferase (GGT) and total bilirubin (TB) were determined by the methods of Varley et al., (1980), Rosalki et al., (1970); Pearlman and Lee (1974) respectively. Malonaldehyde (MDA), reduced glutathione (GSH Rd) and catalase (CAT) were assayed according to the methods described by Ohkawa et al., (1979), Moron et al., (1979) and Sinha (1972) respectively.

**Histopathology examinations:**
Small specimens of the organs liver were taken from each experimental group, fixed in neutral buffered formalin, dehydrated in ascending concentration of ethanol (70, 80 and 90%), cleared in zylene and embedded in paraffin. Sections of 4–6 μm thickness were prepared and stained with hematoxylin and eosin according to Bancroft et al., (1996).

**Statistical analysis:**
Results were expressed as the mean ± SD. Data for multiple variable comparisons were analyzed by one-way analysis of variance (ANOVA). For the comparison of significance between groups, Duncan’s test was used as a post hoc test according to the statistical package program (Artimage and Berry, 1987).

**RESULTS & DISCUSSION**
Total phenolics, total flavonoids and anthocyanins of fresh green (white), red and black grape juice is presented in Table (1). Black grape juice had the highest (P≤0.05) total
phenolic, total flavonoids and anthocyanin contents followed by red grape juice, while green (white) grape juice was lowest ($P \leq 0.05$) in its content of total phenolic, total flavonoids and anthocyanins. Grapes contain high amounts of phenolic, flavonoids and anthocyanins and acts as antioxidant (Yildirim et al., 2005). Liang et al., (2014) reported that the content of Vitis vinifera grape cultivars of total phenolics ranged from 95.3 to 686.5 mg/100g and flavonoids from 94.7 to 1055 mg/100g. Also Mitic et al., (2011) showed that red fruit juices contain a high content of a different group of polyphenols, which have a potent antioxidant capacity and found that black grape juice had total phenolic (2230.4 mg gallic acid equivalent (GAE)/L) total flavonoids (368.48 mg catechin equivalent (CE)/L) and anthocyanins (208.67 mg cyaniding-3-glucosides equivalent (C3GE)/L). Tosaldo et al., (2015) found that white grape juice had lower total phenolic content compared with red grape juice, whereas red grape juice was higher in anthocyanins content than white grape juice. The content of total phenolic of the grape juices was 1151 mg GAE/L reported by Ishimoto et al., (2006). Kulcan et al., (2015) showed that total anthocyanin of extracted raw grape juice was 48.46 mg/L. Moreover, total anthocyanin content varied from 181.2 to 716.4 mg/100g fresh weight in grape varieties (Nile et al., 2015).

Data in Table (2) shows effect of green (white), red and black grape juice on serum lipid profile of hepatotoxicated rats. The results indicated that the levels of total lipids, cholesterol, triglyceride, VLDL.c and LDL.c showed significant ($P \leq 0.05$) increase, while the level of HDL.c significantly ($P \leq 0.05$) decreased in the sodium fluoride groups compared to negative control group. Similar results were obtained by Abdel-Wahab (2013) reported that oral administration of NaF induced a significant increase in the level of total lipids, triglycerides and total cholesterol. Also, Hassan and Yousef (2009) found that the treatment with NaF caused significant increase in plasma
levels of total lipid, total cholesterol, triglyceride and LDL.c and decrease in HDL.c. The obtained results in the present study may be attributed to high levels of NaF lead to its accumulation in the liver leading to disturbance of lipid metabolism and in turn to the reported elevation the lipid profile (Grucka - Manczar et al., 2004).

Sodium fluoride intoxicated rats treated with green (white), red and black grape juice had significant reduction (P≤0.05) in cholesterol, triglyceride, VLDL.c and LDL.c levels compared to positive control group. Shanmuganayagam et al., (2007) reported that the daily consumption of grape juice at 70 ml/kg/day decreased TC by 24% in rabbits. Administration of 10 µl/g BW of green (white), 5,10 µl/g BW of red and black grape juice caused a significant reduction (P≤0.05) in total lipids level in sodium fluoride intoxicated rats, while HDL.c had an opposite trend. On the other hand, the levels of total lipids and LDL.c were lower (P≤0.05) in sodium fluoride intoxicated rats treated with red and black grape juice than that of rats treated with green (white) grape juice. The study of Castilla et al., (2006) on healthy volunteers reported that concentrated red grape juice decreased LDL.c and increased HDL.c as well as in hemodialysis patients, polyphenol from red grape might lead to a possible modifying effect of lipoprotein metabolism through hepatic removal of cholesterol and an increase in its fecal excretion. Also, the present study showed that cholesterol, triglyceride and VLDL.c levels were significantly decreased (P≤0.05) in sodium fluoride intoxicated rats treated with 10 µl/g BW of red and 5,10 µl/g BW of black grape juice compared with rats treated with green (white) grape juice. Vinson et al., (2001) found that grape juice decreased both TC and LDL.c in hamesters. However, treatments with 10 µl/g BW of black grape juice was more effective (P≤0.05) in reducing total lipids, cholesterol, triglyceride, VLDL.c and LDL.c levels in sodium fluoride intoxicated rats than those
treated with 10 µl/g BW of green (white) grape juice, 5,10 µl/g BW of red grape juice and 5 µl/g BW of black grape juice. Moreover, there were no significant differences (P>0.05) in cholesterol, triglyceride, VLDL.c and LDL.c levels between black grape juice (10 µl/g BW) and negative control group. These results may due to high level of polyphenols (total phenolic, flavonoids and anthocyanin) present in grape juices. The action of polyphenols is associated with modulation of important physiological parameters such as plasma lipid profile, as a result of improved resistance towards oxidative stress, inflammation and endothelial dysfunction reported by Van Duynhoven et al., (2010). Also, Alnahdi and Ayaz (2012) reported that phytochemical constituents of the grape juice have hypolipidemic potential action.

Effect of green (white), red and black grape juice on liver functions of hepatotoxicity rats is illustrated in Table (3). From the table it can be observed that treated rats with sodium fluoride caused significant increased (P≤0.05) in the activities of AST, ALT, ALP, GGT and TB. These results agreed with the findings of Abdel -Wahab (2013) who found that exposure to NaF (10 mg/kg/day) for 4 weeks resulted in impairment in liver functions through significant increase in the activity of AST, ALT, ALP and total bilirubin by 73.1%, 131.8%, 63.2% and 310.4% respectively. Also, Shanthakumari et al., (2004) recorded a significant increase in plasma ALT, AST and ALP of rats treated with 25 ppm of fluoride for 8 and 16 weeks. The increased activities of serum AST, ALT and ALP indicate that the liver is susceptible to NaF induced toxicity. This increase could be attributed to hepatic damage resulting either in increased release of functional enzymes from biomembranes, or the increased synthesis as reported by Muthumani and Milton Prabu (2012). The elevation in the concentration of serum bilirubin in NaF - treated rats is consistent with the presence of hepatic damage (Nabavi et al., 2012c).
On the other hand, this study showed significant reduction (P≤0.05) of AST, ALT, GGT, ALP and TB in sodium fluoride intoxicated rats after treating them with green (white) (10μl/g BW), red and black grape juices (5, 10 μl/g BW). These results are in accordance with Pirinccioglu et al., (2012) who reported that Okuzgozu grape juice significantly reduced the elevated activities of AST, ALT, ALP and TB and improved the functional status of the liver. Administration of red grape juice (2ml/rat) daily for 4 week by Alnahdi and Ayaz (2012) ameliorated the alteration in ALT and AST. However, in this study treated sodium fluoride intoxicated rats with black grape juice (10 μl/g BW) showed (p≤0.05) low values of AST, ALT, GGT, ALP and TB compared to black grape juice (5μl/g BW) and red grape juice (5,10 μl/g BW). The procyanidins found in grapes can inhibit the apoptosis and damage of cells by oxygen free radicals (Li and Zhong, 2004). Therefore, the potent effect of grape juice may be the potent antioxidant effect of its polyphenols, including phenolic acids, anthocyanins and flavonoids (eg. proanthocyanidins), whereas phenolic compounds and flavonoids possess hepatoprotective activity in various experimental models as reported by Monagas et al, (2003) and Sharma et al., (2012).

The results in Table (4) show effect of green (white), red and black grape juice on MDA, GSH.Rd and catalase activity in liver homogenates of hepatotoxicated rats. A significant elevation in the level of MDA and reduction in the activities of GSH.Rd and catalase in the liver were observed in sodium fluoride intoxicated rats when compared with negative control group (p≤0.05). Similar results were obtained by Abdel-Wahab (2013) and Nabavi et al, (2013) who reported that NaF intoxication resulted in a significant increase in lipid peroxidation as evidenced by the increased MDA level, whereas the activities of reduced glutathione (GSH.Rd) and
catalase (CAT) were reduced in hepatic tissues. Naf is known to produce oxidative damage in the liver by enhancing peroxidation of membrane lipids, a deleterious process solely carried out by free radicals (Pieta et al., 2012). Impairment of the antioxidant defense system is considered to be critically involved in NaF-induced toxic effects. This impairment interferes with the elimination of lipid peroxidation products and causes their accumulation in the cells leading to the damage of cell membranes reported by Abdel-Wahab (2013).

On the other hand, sodium fluoride intoxicated rats treated with red and black grape juice (5,10 µl/g BW) had lower MDA in the liver than those rats treated with green (white) grape juice (10 µl/g BW) (P<0.05). Also, treatment with 10 µl/g BW of black grape juice was more effective in reducing MDA by 47.691% compared with positive control group (P<0.05). No significant differences (P>0.05) was found in the levels of MDA among sodium fluoride intoxicated rats treated with 10 µl/g BW of black grape juice and negative control group. The present results were in the same trend with Toaldo et al., (2015) who found that grape juice ingestion promoted a significant decrease in thiobarbituric acid reactive substances (TBARS) levels compared to the control intervention, demonstrating the protective effect of juice consumption against lipid peroxidation. Also, the reduction in MDA levels after treating Okuzgozu grape juice may be due to its high content of flavonoids and anthocyanin (Pirinccioglu et al., 2012).

Furthermore, the activities of GSH Rd and CAT were significantly increased (P≤0.05) in livers of sodium fluoride intoxicated rats treated with green (white) grape juice (10 µl/g BW), red and black grape juice (5, 10 µl/g BW) as compared with positive control group. However, sodium fluoride intoxicated rats treated with 10µl/g BW of black grape juice had high activity of GSH Rd and CAT compared to other concentrations of different types grape juice (P≤0.05). Lakshmi et al., (2013) reported that black
grape extract showed significant increase in GSH Rd and CAT activities as well as decrease in MDA levels in rat liver compared with lead control group. Treatment with organic and conventional purple grape juices conferred protection against lipid and protein oxidative damage through limited increase in TBARS levels and inhibited reduction of catalase activity in the liver (Rodrigues et al., 2013). All of these results are in accordance with the content of bioactive polyphenol compounds in grape juice, which could play a role against lipid peroxidation. Gris et al., (2013) showed that the improvement of the anti-oxidative defense was promoted by grape juice ingestion due to the capacity of phenolic compounds that eliminate free radicals and prevent lipid peroxidation by scavenging peroxyl radicals in phospholipids membrane of the cells. Black grape juice was capable of reducing carbonyl and lipid peroxidation levels in the liver and induced better antioxidant effects because of its content of anthocyanin (Dani et al., 2008).

Photo (1) shows effect of green (white), red and black grape juices on histological examination of liver tissues in hepatotoxicity rats. Histopathological examination of the liver of normal control rats revealed normal histological structure without any pathological lesions (H&EX 400) (Photo1A). While the examination of sodium fluoride intoxicated rats liver tissues showed congestion of the control veins and hepatic blood vessels with sinusoidal dilatation. The parenchymal hepatocytes showed various degenerative changes mostly centrilobular including granular and vacuolar degeneration with activated kupffer cells and necrosis of the hepatocytes without any nuclear structure (Photo 1B). Histological sections of livers in Naf treated rats revealed hepatic injury manifested by mononuclear cell aggregation around the congestive blood vessel and bile duct in the buccal area together with dilatation of the sinusoid reported by Khudiar and Aldabaj (2015).
Also, Atmaca et al., (2014) showed that fluoride intoxication was associated with severe histopathological changes in liver tissues.

As shown in (Photo 1C) portal area in liver of sodium fluoride intoxicated rats treated with 5µl/g BW of green (white) grape juice showed mild fibroplasia, mild bile duct hyperplasia and inflammatory cells infiltration. The changes in rats treated with 5µl/g BW of red grape juice were focal area of necrotic hepatocytes replaced by mononuclear inflammatory cells (Photo 1D). However, only sinusoidal dilatation and mild hepatocellular degeneration were observed in liver of sodium fluoride intoxicated rats treated with 5µl/g BW of black grape juice (Photo 1E). On the other hand, fluoride rats treated with 10 µl/g BW of green (white) grape juice revealed mild hyperplasia of the bile duct with few inflammatory cells infiltration (Photo 1F). Moreover, the liver of sodium fluoride rats treated with 10µl/g BW of red and black grape juice showed mild kupffer cell activation and few necrotic cells but with normal organization of the hepatic cords (Photo 1G and H). So the histological examination of liver tissues of sodium fluoride intoxicated rats treated with 10µl/g BW of green (white), red and black grape juices had nearly the same moderate degree of restorative effect on the hepatic structure against the harmful effect of NaF. Pirinccioglu et al., (2012) found that administration of grape juice resulted in the restoration of the pathology of the liver tissue to some extent. Grape juices present important hepatic and systemic protection effects against oxidative damages in rats (Rodrigues et al., 2013). Quercetin (the most abundant flavonoids in black grape juice) was reported as a protective agent against oxidative damage in rat hepatocytes reported by Liu et al., (2009), Whereas flavonoids effectively prevent lipid peroxidation and protein oxidation in rats liver mitochondria (Londhe et al., 2009).
CONCLUSION

These results have suggested that red and black grape juice contain a high content of different group of polyphenols, which have a potent antioxidant capacity and potent effects against the toxicity of NaF through inhibition of the development of fluoride-induced hepatotoxicity in rats. Accordingly, care must be taken into account to avoid mammalian and human exposure to NaF and attention should be paid to sources of it in foods and water as well as occupational sources.

References

Abdel-Wahab WM (2013):

Alimi H; Hfaeidh N; Mbarki S; Bouoni Z; Sakly M

and Ben Rouma K (2012):
Evaluation of Opuntia ficus indica f. inermis fruit juice hepatoprotective effect upon ethanol toxicity in rats. Gen Physiol Biophys., 31(3): 335-342.


Alnahdi H S and Ayaz N O (2012): Beneficial impact of red grape juice against tissue damage induced by ethanol toxicity in rats, Zoology, 31A (2):51-64.


Atmaca N; Atmaca HT; Kanici A and Anteplioglu T (2014): Protective effect of resveratrol on sodium
A Comparative Study Between Grape (Vitis vinifera) Juice Varieties on Liver Toxicity Induced by Sodium Fluoride in Adult Rats

Naglaa A. EL- Sheikh, Abeer A. Khed and Alaa H. Nofal

Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. December 2016 (48) 14


Capanoglu E; Vos RCHD; Hall RD; Boyacioglu D and Beekwilder J (2013): Changes in polyphenol content during production of grape juice concentrate. *Food Chemistry, 139*: 521-526.


Demacker PM; Von-Janssen HE; Hifman AM; Vant’s Lear A and Jansen AP (1980): Measurement of high density lipoprotein cholesterol in serum. Comparison of six

**Fossati P and Prencipe I (1982):**

**Frings CS and Dunn RT (1979):**

**Gao Q; Liu Y J and Guan Z Z (2009b):**
Decreased learning and memory ability in rats with fluorosis: increased oxidative stress and reduced cholinesterase activity in the brain. *Fluoride* 42: 277-285

**Gris EF; Mattivi F; Ferreira EA; Vrhovsek U; Filho DW; Pedrosa RC and Bordignon-Luiz MT (2013):**

**Grucka-Mamczar E; Birkner E; Kasperczyk S; Kasperczyk A; Chlubek D and Samujlo D (2004):**

**Grucka-Mamczar E; Zalejska-Fiolka J; Chlubek D; Kasperczyk S; Błaszczyk U; Kasperczyk A; Swietochowska E and Birkner E (2009):**


Koyama R; de Assis AM; Yamamoto LY; Borges WF; de Sa Borges R; Prudencio SH and Roberto SR (2014): Exogenous abscisic acid increases the anthocyanin concentration of berry and juice from 'Isabel' grapes (Vitis labrusca L.). *Hort Science,* 49: 460-464.
A Comparative Study Between Grape (*Vitis vinifera*) Juice Varieties on Liver Toxicity Induced by Sodium Fluoride in Adult Rats

Naglaa A. EL-Sheikh, Abeer A. Khed and Alaa H. Nofal


Liu S; Hou W; Yao P; Zhang B; Sun S; Nussler A K and Liu L (2009): Quercetin protects against ethanol-induced oxidative
damage in rat primary hepatocytes. *Toxicol In Vitro*.


Moron MS; Despierre JW and Minnervik B (1979):

Moghaddam AH and Eslami S (2012a):  

Nabavi SF; Habtemariam S; Jafari M; Sureda A and Nabavi S M (2012b.):  

Nabavi SM; Nabavi SF; Eslami S and Moghaddam A H (2012c):  

Nabavi SF; Nabavi SM; Habtemariam S; Moghaddam AH; Sureda A; Daglia M; Jafari M and Latifi AM (2013):  

Nile SH; Kim DH and Keum YS (2015):  
Determination of anthocyanin content and antioxidant capacity of different grape varieties. *Ciência Téc. Vitiv.* 30(2): 60-68.

Ohkawa H; Ohishi N and Yagi K (1979):  

Park YK; Park E; Kim JS and Kang MH (2003):  
Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans.
A Comparative Study Between Grape (Vitis vinifera) Juice Varieties on Liver Toxicity Induced by Sodium Fluoride in Adult Rats

Naglaa A. EL- Sheikh, Abeer A. Khed and Alaa H. Nofal

Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. December 2016 (48) 20

*Mutation Research, 529: 77–86.*

Pearlman FC and Lee RTY (1974):
Detection and measurement of total bilirubin in serum, with use of surfactants as solubilizing agents. *Clinical Chemistry* 20, 447–453.

Pieta BS; Bielec B; Birkner K and Birkner E (2012):

Pirinccioğlu M; Kızıl G; Kızıl M; Ozdemir G; Kanay Z and Ketani MA (2012):
Protective effect of Okuzgozu (Vitis vinifera L. cv.) grape juice against carbon tetrachloride induced oxidative stress in rats. *Food Funct., 3:*668-673.

Reeves PG; Nielsen FH and Fahey GC (1993):

Rodrigues AD; Scheffel TB; Scola G; Dos Santos MT; Fank B; Dani C; Vanderlinde R; Henriques JA; Coitinho AS and Salvador M (2013):
Purple grape juices prevent pentylenetetrazol-induced oxidative damage in the liver and serum of wistar rats. *Nutri. Research, 33:*120-125.

Rosalki SB; Rav D; Lchman D and Prentice M (1970):
A Comparative Study Between Grape (Vitis vinifera) Juice Varieties on Liver Toxicity Induced by Sodium Fluoride in Adult Rats

Naglaa A. EL- Sheikh, Abeer A. Khed and Alaa H. Nofal


Shanmuganayagam D; Warner TF; Krueger CG; Reed JD and Folts J (2007): Concord grape juice attenuates platelet aggregation, serum cholesterol and development of atheroma in hypercholesterolemic rabbits, Atherosclerosis, 190:135–142.

Sharma A; Sangameswaran B; Mahajan SC and Manmeet Singh Saluja MS (2012): Protective effects of Sida veronicaefolia against ethanol induced hepatotoxicity in experimental animals. Phytopharmacol., 3(1): 137-144.


Toaldo IM; Cruz FA; Alves T; de Gois JS; Borges DL; Cunha HP; da Silva EL and Bordignon-Luiz MT (2015): Bioactive potential of Vitis labrusca L. grape juices from the southern region of Brazil: Phenolic and elemental composition and effect on lipid peroxidation in healthy subjects. Food Chemistry, 173: 527-535.

Van Duynhoven JP; Vaughan EE; Jacobs DM; Kemperman RA; Van Velzen EJJ; Gross G; Roger LC; Possemiers S; Smilde A K; Doré J; Westerhuis JA and Wiele TV (2010): Microbes and Health Sackler Colloquium: Metabolic fate of polyphenols in the human superorganism. Proceedings of the National Academy of
A Comparative Study Between Grape (Vitis vinifera) Juice Varieties on Liver Toxicity Induced by Sodium Fluoride in Adult Rats

Naglaa A. EL- Sheikh, Abeer A. Khed and Alaa H. Nofal


Varley H; Gewenlock A and Bell M (1980):

Vinson JA; Teufel K and Wu N (2001):
Red wine, dealcoholized red wine, and especially grape juice, inhibit atherosclerosis in a hamster model, Atherosclerosis 2001, 156, 67–72

Wang Y N; Xiao KQ; Liu J L ; Dallner G and Guan Z Z.(2000):
Effect of long term fluoride exposure on lipid composition in rat liver. Toxicology,146, 161– 169 .

Xu BJ and Chang SKC (2007):
A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci., 72: 159-166.

Yang J and Xiao XY (2013):

Yildirim H K; Akçay YD; Güvenç U; Altindisli A and Sözmen EY (2005):
Antioxidant activities of organic grape, pomace, juice,must, wine and their correlation with phenolic content. Int. J. Food Sci. Technol., 40, 133-142.
A Comparative Study Between Grape (Vitis vinifera) Juice Varieties on Liver Toxicity Induced by Sodium Fluoride in Adult Rats

Naglaa A. EL- Sheikh, Abeer A. Khed and Alaa H. Nofal

Table (1): Total phenolic, total flavonoids and anthocyanins of fresh green (white), red and black grape juice.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Green (white) grape juice</th>
<th>Red grape juice</th>
<th>Black grape juice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total phenolic (mg gallic acid/100ml)</td>
<td>53.41 ± 2.81</td>
<td>125.6 ± 2.8</td>
<td>172.8 ± 3.01</td>
</tr>
<tr>
<td>Total Flavonoids (mg catechin/100 ml)</td>
<td>14.75 ± 0.75</td>
<td>22.74 ± 1.87</td>
<td>32.42 ± 3.49</td>
</tr>
<tr>
<td>Anthocyanins (mg cyanidin-3-glucoside/100ml)</td>
<td>0.89 ± 0.34</td>
<td>72.47 ± 2.65</td>
<td>95.34 ± 0.79</td>
</tr>
</tbody>
</table>

Each value in the table is the mean ± standard deviation of three replicates.
# A Comparative Study Between Grape (Vitis vinifera) Juice Varieties on Liver Toxicity Induced by Sodium Fluoride in Adult Rats

Naglaa A. EL Sheikh, Abeer A. Khed and Alaa H. Nofal

## Table (2): Effect of green (white), red and black grape juice on serum lipid profile of hepatotoxicity rats

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Negative control</th>
<th>Sodium Fluoride groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Positive control (5µl/g BW)</td>
</tr>
<tr>
<td>Total lipids (mg/dl)</td>
<td>421.96 f ± 11.03</td>
<td>604.71 a ± 10.24</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>97.38 f ± 1.34</td>
<td>170.33 a ± 7.5</td>
</tr>
<tr>
<td>Triglyceride (mg/dl)</td>
<td>66.86 f ± 2.18</td>
<td>114.03 a ± 3.96</td>
</tr>
<tr>
<td>HDL.c (mg/dl)</td>
<td>56.97 a ± 1.67</td>
<td>13.75 g ± 1.33</td>
</tr>
<tr>
<td>VLDL.c (mg/dl)</td>
<td>13.37 f ± 0.44</td>
<td>22.81 a ± 0.79</td>
</tr>
<tr>
<td>LDL.c (mg/dl)</td>
<td>27.04 f ± 0.77</td>
<td>133.77 a ± 7.79</td>
</tr>
</tbody>
</table>

Values in the table were expressed as means ± SD. Different letters in the same row were significantly different (p < 0.05).

HDL.c: high density lipoprotein cholesterol, VLDL.c: very low density lipoprotein cholesterol, LDL.c: low density lipoprotein cholesterol.
A Comparative Study Between Grape (Vitis vinifera) Juice Varieties on Liver Toxicity Induced by Sodium Fluoride in Adult Rats

Naglaa A. EL Sheikh, Abeer A. Khed and Alaa H. Nofal

Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. December 2016 (48) 25

Table (3): Effect of green (white), red and black grape juice on liver function of hepatotoxicity rats.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Negative control</th>
<th>Sodium Fluoride groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive control</td>
<td>Green (white) grape juice</td>
</tr>
<tr>
<td></td>
<td>(5µl/g BW)</td>
<td>(10 µl/g BW)</td>
</tr>
<tr>
<td>AST (U/I)</td>
<td>70.83 ± 2.4</td>
<td>125.33 ± 2.8</td>
</tr>
<tr>
<td>ALT (U/I)</td>
<td>30.09f ± 2.35</td>
<td>67.5a ± 3.62</td>
</tr>
<tr>
<td>GGT (U/I)</td>
<td>33.67f ± 2.88</td>
<td>80.02a ± 2.64</td>
</tr>
<tr>
<td>ALP (U/I)</td>
<td>116.13f ± 2.58</td>
<td>182.88a ± 2.91</td>
</tr>
<tr>
<td>TB (mg/dl)</td>
<td>0.42d ± 0.1</td>
<td>0.99a ± 0.3</td>
</tr>
</tbody>
</table>

Values in the table were expressed as means ± SD. Different letters in the same row were significantly different (p < 0.05).

A Comparative Study Between Grape (Vitis vinifera) Juice Varieties on Liver Toxicity Induced by Sodium Fluoride in Adult Rats

Naglaa A. EL- Sheikh, Abeer A. Khed and Alaa H. Nofal

Table (4): Effect of green (white), red and black grape juice on MDA, GSH and Catalase activity in liver homogenate of hepatotoxicity rats

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Groups</th>
<th>Negative control</th>
<th>Sodium Fluoride groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Positive control</td>
<td>Green (white) grape juice</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5µl/g BW)</td>
</tr>
<tr>
<td>MDA (Mmol / g.tit)</td>
<td>27.16 ± 8.93</td>
<td>61.14 ± 3.44</td>
<td>59.24 ± 2.71</td>
</tr>
<tr>
<td>GSH Rd (Mg / g.tit)</td>
<td>17.45 ± 1.49</td>
<td>7.86 ± 1.28</td>
<td>8.01 ± 0.64</td>
</tr>
<tr>
<td>CAT (Mmol/ g.tit)</td>
<td>80.7 ± 1.8</td>
<td>47.2 ± 3.04</td>
<td>49.35 ± 1.91</td>
</tr>
</tbody>
</table>

Values in the table were expressed as means ± SD. Different letters in the same Raw were significantly different (p < 0.05).
MDA: malonaldehyde, GSH.Rd: reduced glutathione, CAT: catalase.
A Comparative Study Between Grape (Vitis vinifera) Juice Varieties on Liver Toxicity Induced by Sodium Fluoride in Adult Rats

Naglaa A. EL- Sheikh, Abeer A. Khed and Alaa H. Nofal

A: negative control, B: positive control (sodium fluoride group untreated), c: sodium fluoride group treated with 5µl/g BW of green (white) grape juice, D: sodium fluoride group treated with 5µl/g BW of red grape juice, E: sodium fluoride group treated with 5µl/g BW of black grape juice, F: sodium fluoride group treated with 10 µl/g BW of green (white) grape juice, G: sodium fluoride group treated with 10µl/g BW of red grape juice H: sodium fluoride group treated with 10µl/g BW of black grape juice.

Photo (1): Effect of green (white), red and black grape juice on histological examination of liver tissues in hepatotoxicity rats.
دراسة مقارنة بين أنواع مختلفة من عصير العنب على تسمم الكبد الناجم عن فلوريد الصوديوم في الجرذان البالغة

نجلاء على الشيخ – عبير أحمد خضر – آلاء حازم نوقف
قسم التغذية وعلوم التغذية بكلية الاقتصاد المنزلي جامعة المنوفية، شبين الكوم، مصر.

الملخص العربي

استهلاك الفواكه يلعب دورا هاما كعامل حماية للصحة، ويعتبر عصير العنب مشروب وقائي صحى نظرا لمحتواه العالى من المركبات الفينولية الفعالة ونشاطها المضاد للأكسدة. لذلك فقد صممت الدراسة الحالية لمقارنة التأثيرات المحتملة لثلاثة أنواع من عصير العنب (الأخضر (الأبيض)، الأحمر والأسود) ضد تسمم وتفقد الأنسجة الناجم عن فلوريد الصوديوم في كبد الجرذان. تم تقسيم الجرذان إلى خمسة جماعات، المجموعة الأولى كانت بمثابة المجموعة الضابطة، وتم تقديم جرعة يومية من عصير العنب الأخضر (الأبيض)، الأحمر والأسود على التوالي. بعد انتهاء فترة التجربة، تم تقسيم منصور دهون الدم، وظائف الكبد، مستوى المالوندالدهيد (MDA) والجلوتاثيون المختزل (GSH.Rd)، والكتالاز (CAT) والفسفاتوحلون (ALP) لأشد الكبد، وظائف الكبد، مستويات أنسجة الكبد، في نتائج ملاحظات. وظائف الكبد، في حين أن معاملة الفئران بالمصابة بـ(GSH.Rd) كانت أدنى من مستويات دهون الدم، انزيمات الكبد، والمالوندالدهيد (MDA) في نسخة الكبد، في حين أن معاملة الفئران بـ(GSH.Rd) كانت أدنى من مستويات دهون الدم، انزيمات الكبد، والمالوندالدهيد (MDA).

الكلمات الكشافة: تسمم الكبد، فلوريد الصوديوم، عصير العنب الأحمر والأسود، وظائف الكبد.