Systematic Review and Meta-analysis of

Zinc Supplementation and Stunting in Children under 5 years of age

Gihan Fouad Ahmad¹, Hanaa Sabry Ahmed²and Enas Sayed Abbas³

1. Head of National Nutrition Institute- Cairo - Egypt

2. Harvard Medical School Associate

3. Clinical Nutrition Department- National Nutrition Institute- Cairo - Egypt

Corresponding author: Enas Sayed Abbas - Email:enas.sayed09@yahoo.com Mobil +201222426248

ABSTRACT

he prevalence of zinc deficiency is 28 % of stunted Egyptian children. Therefore, this study was done to determine whether zinc supplementation strategy is feasible and effective for reducing growth retardation at national level. We conducted literature searches of electronic databases of the international standard randomized control trial number register that reported on the effect of zinc supplementation in infants or children below 5 years old. The findings were pooled using random effects meta-analysis; we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Guidelinesduring all stages of implementation, analysis, and reporting of these meta-analyses after testing of homogeneity. The final fifty four randomized controlled trials included in the meta-analysis showed the zinc supplementation had a greater effect on height and Height for age z-score in children compared with infants (P-interaction = 0.002 and 0.06, respectively). Among children aged ≥ 2 years, zinc increased height (N = 7 trials; WMD = 1.37 cm, 95%CI: 0.50–2.25) and height for age z-score (N = 6 trials; WMD = 0.12, 95%CI: 0.05–0.19). Zinc supplementation significantly increased height (N = 40 trials, WMD = 0.23 cm, 95%CI: 0.09–0.38; I2 = 66.9%) showed 28 of 40 studies (70%) had a positive effect of zinc supplementation among children aged < 5 years old on height in randomized controlled trials and, ten of them were statistically significant. Oral zinc supplementation among children aged from 2-5 years is recommended. However, further studies are needed.

Key Words: Stunting, infants, zinc supplementation, height, children.

BACKGROUND

Stunting is defined by a height-for-age *z*-score of more than 2 standard deviations below the World Health Organization (WHO) Child Growth Standards main (WHO,1995), 154.8 million (22.9%) children under 5 years of age suffered from child stunting worldwide in 2016 (WHO, 2020). The current worldwide prevalence of stunting among children under the age of5 years is of the order of 25% and its reduction by 40% global target for 2030 (Cash and Patel, 2020).

Stunting can occur in the first 1000 days of life and is related to many factors, such as socioeconomic status. dietarv intake. infections. maternal nutritional infectious status. micronutrient diseases deficiencies and the environment (Black et al., 2008, Ikeda et al., **2013**). Childstunting is a complex entity that may reflect several etiologies, particularly a poor, unbalanced diet and insufficient vitamin/micronutrient intake. It involves social factors, also including family's resources and configuration, as well as the broader political and economic conditions in which children live

(Stewart et al., 2013). Therefore, the current potential causes of stunting range from inadequate food to poor hygiene and repeated infections (Schaible and Stefan, 2007).

It affects the function and structure of the brain, impeding mental development and possibly affecting human capital and social progress in the long term (Hashad, 2014).

In 2016. 87 million stunted children lived in Asia, 59 million in Africa and 6 million in Latin American the and regions (WHO. Caribbean 2020). Five sub regions have child-stunting rates that exceed 30%: western Africa (31.4%), middle Africa (32.5%), eastern Africa (36.7%), southern Asia (34.1%) and Oceania (38.3%; excluding Australia and New Zealand. Both Asia and Oceania have experienced slow or no progress in reducing child stunting. In Latin America and Caribbean. stunting has the declined twice as quickly as in Africa from 2000 to 2016 (WHO, 2020). However, the reduction of child stunting has not been the same in all groups of the population, (from 1990 to 2013) in the Asia-Pacific, Latin American and Caribbean regions (WHO, 2018), that amounts to 2.1 million individuals, the largest number of stunted children in the Middle East and North Africa (MENA) region (Hashad, 2014).

Stunting can be reduced by many factors such as environmental, water sanitation and nutritional. The important one is nutritional, whereas applying several nutritional modifications like zinc supplementation (**Huynh et al.**, **2014**).

Zinc is an essential mineral that is required for normal skeletal growth and bone homeostasis. Furthermore, zinc appears to be able to promote bone regeneration (**O'Connor et al., 2020**).

Zinc affects GH metabolism, therefore its deficiency may result in reduced GH production and/or IGF-I. The interrelationship among zinc, growth and GH–IGF-I axis appears to be complex (**Nishi**, **1996**).

The mean intake of zinc was 75.7% of reference nutrient intake amongchildren aged 3-5 years, and serum zinc levels positively correlated with their height and weight (Yu, 2007). There after zinc supplementation should be included in national strategies to reduce stunting in children younger than 5 years of age in developing countries (**Abdollahi etal., 2019**).

Benefits of zinc supplementation for height, HAZ and weight might be more effective among children aged 2 years (Liu etal., 2018). The smaller effect in infants could be due to maternal breastfeeding (Brown etal., 2009), or better initial zinc body stores from in utero development, compared to later in life (Underwood, 1999).

Globally, nearly 17% of the world's population is at risk of zinc deficiency due to inadequate dietary intake of major sources including lean meat, shellfish, and nuts, with Asia and Africa having the highest prevalence. Thus, zinc supplementation may be a crucial intervention to improve child growth and reduce underweight and stunting globally (Liu et al., 2018).

Childhood stunting is a serious health problem in Egypt as well as zinc deficiency. Prevalence of stunting is 21% of Egyptian children under the age of five years (Hashad, 2014).Whereas prevalence of zinc deficiency is 28 % of stunted Egyptian children (Saleh etal., 2020).

The aim of this pragmatic study is to determine whether zinc supplementation strategy is feasible and effective for reducing growth retardation at national level.

METHODS

After testing of homogeneity, we searched Pub Med. EMBASE. Cochrane Library, Web of Science, and trial registries for eligible trials. Inclusion selection and data extractions were performed independently and in duplicate. The Cochrane Risk of Bias tool evaluated study quality. Findings were pooled using random effects meta-analysis; we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Guidelines during all stages of implementation, analysis, and reporting of these meta-analyses after testing of homogeneity (Liu et al., 2018).

Search Strategy:

This study conducted literature searches of electronic databases including Pub Med, EMBASE Web of Science, The Cochrane Library, and the international standard randomized control trial number register. Examples of search terms included: (zinc zinc or supplement) and (stunting or height or birth weight) Infant or child and (randomized or clinical trial). Complete search terms and strategies for each database are supplementary "Table 1".

These electronic searches were supplemented by hand searching of citation lists and electronic searching of "related articles" on Pub Med for all final included publications; as well contacts with experts to identify any other recently published studies , grey literatures to avoid published bias. Authors were contacted to request missing data or to clarify methods or results.

Primary Exposure and Outcomes:

The exposure of interest was zinc supplementation in children (below 5 years). Whereas the recommended dietary allowance (RDA) for infants aged 0-6 month(s) is 2 mg, 3 mg for young children aged 7-36 months and 5mg perday for children aged 4-5 years (Larson et al., 2008). Although, the

amount of zinc needed in young infants to keep a positive zinc balance in regions with a high prevalence of zinc deficiency is still unknown. The majority of published results of efficacy trials of zinc treatment have tested doses ranging from 10 mg (infants) to 20 mg (below 5 years children) of elemental zinc per day, a safe dosage in these children. Doses of up to 70 mg twice a week have been provided without any toxic effect or clinically significant copper deficiency (Bates et al., 1993). For endpoints measured at birth, the growth outcomes of interest were birth weight and low birth weight (LBW, defined as birth weight < 2500 g). For outcomes measured in children, the growth outcomes of interest were height, weight, corresponding Z-scores including height-for-age (HAZ), weight-for-age (WAZ), and weight-for-height (WHZ), and risk of stunting (HAZ < -2), measure association between exposure and outcomes bv measure risk ratios and attribute risk (Liu et al., 2018).

Study Selection:

Current study included some randomized controlled trials that reported on the effect of zinc supplementation in infants or children below 5 years old including low birth weight, stunted children, on birth or child growth outcomes, including an effect measure and information to compute its standard error.

The title and abstract of the studies identified in the computerized search were scanned in duplicate to exclude references that were obviously irrelevant. In orderto determine eligibility for inclusion of the remaining articles, their full texts were reviewed, and multiple reports of the same study were linked together.

Inclusion criteria:

Included studies were RCTs in child population aged below 5 years that provided supplemental zinc as an oral dose. Trials with simultaneous fortification or supplementation of additional micronutrients, or simultaneous co-interventions like health education and/or drugs (for example, deworming or antimalarials) wereincluded if the only difference between the intervention and comparison arms waszinc supplementation. **Exclusion criteria:**

Search excluded studies if they included children aged more

than 5 years or if they were conducted in animals or with other intervention components, in which theeffect of zinc could not be separated between treatment groups due to other unequal interventions. Which the dose of zinc supplementation intake could not be quantitatively measured, or with duration of supplementation < 3 months.

Given our interest in the sustained effects on child growth, we excluded observational studies, cross-sectional ecological studies. commentaries, general reviews, case reports; or trials or conducted in populations with major chronic disease (e.g., sickle-cell disease. cystic fibrosis. HIV infection. and severe protein. Energy malnutrition if or were hospitalized. Group RCTs were excluded from all reviews conducted by the EURRECA consortium due to the increased risk of confounding factors. When duplicate publications study were from the same identified. we included the publication reporting the largest number of participants for each outcome of interest.

Data Extraction:

Data from included studies were independently extracted in duplicate by two investigators using a standardized electronic form (Microsoft Excel, with any differences SPSS). resolved by consensus. Information was extracted on the publication (first author, contact information, Publication year). Study details (name, location, year(s) of enrollment); population socioeconomic (age. status. of number participants in treatment and control arms). baseline nutritional status (e.g., proportion of low birth weight or stunting), zinc intervention (type, daily dose, and duration), duration of follow-up, and age at outcome assessment, dropout rate, and including effect outcomes and associated measures uncertainty. Missing information was obtained by direct author contact or, if necessary, estimated using a standard approach. Study quality was assessed using the Cochrane Collaboration risk-oftool bias for randomized controlled trials. including for selection potential bias. performance bias, detection bias, attrition bias, and reporting bias through a six-question quality

control check list (Higgins, 2011). We evaluated the risk of bias for using the criteria each trial outlined in the Cochrane Handbook for **Systematic** Reviews of Interventions (Higgins, 2019). Plots of 'Riskof bias' assessments was created in Review Manager (RevMan) (Gera et al., 2018). Risk ratio (AR) estimates with 95% confidence intervals (CI) were used for binary outcomes; for continuous outcomes. mean differences (MD) were used. In order to maximize he data input for the pooled outcome measures, we utilized post-intervention (means and standard values deviations (SDs)) in preference from baseline to the changes (Higgins, 2019). In factorial trials and in multi-arm designs yielding two or moreintervention groups (different zinc doses or salts used) and a single control group, the data in the intervention groups, including the variation in the interventioncharacteristic, was pooled and compared against the single control group to preventunit of analysis error. For clusterrandomized trials, we used the cluster- adjusted RR or stated means and 95% CI, irrespective of the method employed for

adjustment. In case of missing data, we contacted trial authors for information wherever possible; and where this could not be done, or the authors did not respond,we imputed the missing values, where feasible. In case any assumptions were made for such imputations, they were recorded, and are detailed in Web Appendix.

RESULTS

Out of 1107 identified articles, 54 trials were eligible, totaling 21,185 unique including 20.412 participants infants < 2 years old (47 trials), and 773 children aged 2 years or older (7 trials) who took supplementation. One trial only was cluster- randomized, the rest were individually randomized. 15 trials had a factorial design. Those 54 trials were conducted on 5 different continents, including 7 studies in the US and Caribbean, 2 in Europe, 15 in Asia, 13 in South and Central America, 7 in Africa, and 10 in the Middle East. The mean age at randomization for infants is 8.7 months and for children, 43.4 months. The mean duration of intervention was 30.9 weeks in infants, and 38.9 weeks in children; with mean zinc doses of 7.6. and 8.5 mg/day,

respectively.

The follow-up period for majority of the 54 trials was the same length as the intervention, however eight trials only upon children, an extended follow-up after the intervention was carried out. For zinc formulation, 37 (69%) of the 54 trialsused sulfate zinc; 6 trials (11%), gluconate zinc; 4 (8%) acetate; 4(8%)unknown; the remaining 2 trials (4%) are citrate, lactate and methionine, respectively. According to Cochrane Collaboration risk-of-bias tool for randomized controlled trials. 36 (66.7%) of the 54 trials had a quality score of 5 or 6, classified as high quality, and 8 (14.8%) trials had a score 2 or below, classified as low quality. (Table 1). A11 trials used zinc supplementation while trials regarding zinc fortification were evaluated and excluded due to other unequal interventions between treatment groups that would prevent isolation of the effect of zinc.

1 All studies were randomized controlled trials. Most were also placebo-controlled, except for 1 open-label trial in infants, and 1 in children.

2 If not reported in the text,

socioeconomic status was estimated based study on characteristics. determined bv two reviewers independently and "-"stands for in duplicate. missing.

3 The Cochrane Collaboration's tool for assessing risk of bias was used to score studies as having a low (-6 to 2), medium (3–4), or high score (5– 6) using a 12-question form.

Study quality was assessed using the Cochrane Collaboration risk-of-bias tool for randomized controlled trials, including for selection potential bias. performance bias, detection bias, attrition bias, and reporting bias through a 6-question quality control checklist. Each question was answered as low (score=1), high (score=-1), or unclear (score=0) risk of bias; and values were summed (potential range: (-6 to +6). (**Table 2**).

Infant and Child Zinc Supplementation and Growth Outcomes

Amongst trials conducted, when we explored potential factors that might modify the effect of zinc supplementation, significant heterogeneity was not identified

by world region, duration of supplementation, daily dose of supplementation. zinc socioeconomic status and zinc type (Table 3). However, zinc had a greater effect on height and HAZ for supplementation in children compared with infants (Pinteraction = 0.002 and 0.06, respectively). Among children aged ≥ 2 years, zinc increased height (N = 7 trials; WMD = 1.37cm, 95%CI: 0.50–2.25) and HAZ (N = 6 trials; WMD = 0.12,95%CI: 0.05-0.19).

Table4showedthat publication year also appeared significant in meta- regression, with stronger effects reported in trials published before year 2000 than thereafter (P= 0.08 for height, P = 0.002 for HAZ). In multivariable meta-regression including both child age and publication year in the models, child age was an independent predictor of heterogeneity for height (P-interaction < 0.05), whilepublication year was for HAZ (P-interaction < 0.05). Nine trials evaluated theeffect of zinc supplementation on No stunting. statistically significant effect was identified (RR=1.01, 95%CI: 0.96–1.06; I2 = 0.0%).

Among trials conducted after birth, zinc supplementation significantly increasedheight (N = 40 trials, WMD = 0.23 cm, 95%CI: 0.09–0.38; I2 = 66.9%) as shown in(**Figure 2**). Twentyeight of 40 studies (70%) had a positive effect size, and 10 were statistically significant.

While (Figure 3) declared that the effect on HAZ was not statistically significant (N = 40 trials; WMD = 0.02; 95% CI: 0.01-0.06; I2 = 65.6%); about half(22 of 40) reported a positive effect size, and only 4 were statistically significant.

In 29 trials. zinc supplementation did not significantly affect WHZ (WMD: 0.02, 95%CI: -0.03-0.06, $I^2 =$ 56.1) (Figure 4). Six trials appraised risk of underweight while seven trials, wasting. Upon merging these studies, significant effects were not recognized on risk of underweight (RR = 1.03, 95%CI: 0.97–1.09; I2 = 0.0%) or wasting (RR = 0.88, 95%CI: 0.74– 1.05; I2 = 57.0%).

Influence of Study Quality

Throughout sensitivity analyses, we excluded six infant/child trials categorized as being of a low quality score (≤ 2).

Whereas the remaining trials, zinc supplementation significantly increased height (N = 34 trials, WMD = 0.19 cm, 95% CI: 0.05-0.34), HAZ (N = 37, WMD = 0.03, 95% CI: -0.01-0.06), or WHZ (N = 26, WMD = 0.02, 95% CI: -0.03, 0.06).

Evaluation of Publication Bias

Funnel plots visual inspection implied asymmetry consistent potential with publication bias and small-study effects for height, HAZ. Egger's statistical recognized test evidence for potential smallstudy effects for height (p =0.01), HAZ (p <0.001). On the other hand, findings for Begg's not statistically test were significant for any of these outcomes ($p \ge 0.12$ each). Upon exploring the potential publication bias influence using trim-and-fill method. the 6 hypothetically missing studies were evaluated for height and, 2 for HAZ. Besides these missing studies resulted in a theoretical corrected pooled estimate of 0.14 cm (95%CI: -0.03, 0.31) for height and 0.02 (95%CI: -0.02, 0.05) for HAZ.

DISCUSSION

This systematic review was undertaken to investigate the association between zinc intake and indices of growth for stunting in children aged below 5 years. A major strength of the current review is the meta-analysis of statistically homogeneous studies. Despite the fact that previous meta-analyses found statistically significant effect sizes on various aspects of child growth, all have had high heterogeneity.

In this systematic review and meta-analysis of randomized controlled trials, we realized that zinc supplementation in infants and children, improved specific growth outcomes including height. We also identified evidence for potentially stronger effects on height and HAZ by child age, with greater effects when supplements were given to children aged ≥ 2 years, rather than infants. This might explain why zinc supplementation may be more effective among children than infants may, because during the first year there was rapid growth leading to negative zinc balance, which leads afterwards to increasing supplementation benefits and, during the second year of life most infants have

been weaned or are weaning from breastfeeding, making diet a crucial source for zinc intake. In the current meta- analysis, most trials did not assess zinc status at enrollment, making it difficult to know if results would vary based on baseline zinc levels. A smaller effect during infancy could also relate to in-field challenges of reliably measuring growth, especially WHZ, during infancy compared with childhood (Mwangome and Berkley, 2014).

Possible small-study effects were seen for height and HAZ, but not other outcomes. This could be due to publication bias or, alternatively, differences in effects of smaller studies from true heterogeneity in certain populations or study designs studying these outcomes.

Similar to our study, the two systematic reviews by Brown et al., 2002, (2009), declared statistically significant positive effects of zinc supplementation on linear growth and weight gain. Brown et al., (2002), reported by Brown et al., (2009), but not in their prior study marginally statistically а significant effect of zinc on change in WHZ. A second metaanalysis, published in 2011, included 36 trials and found a positive effect only on linear growth, measured by height or HAZ (Imdad and Bhutta. **2011**). Our findings confirm those of Imdad and Bhutta, 2011, who also reported а significant positive effect of zinc supplementation on linear growth. Statistically significant heterogeneity was found among the studies included in linear growth and weight-gain metaanalyses in all three reviews, likely to be due in part to the inclusion of data from infants, children and/or adolescents. As well, **Brown et al.**, 2002. involved severely malnourished, hospitalized children in their 2002 meta-analyses; however, they ruled out such children in their subsequent review Brown et al., 2009. Other prior metaanalyses (Brown et al., 2002 and, 2009, Mayo-Wilson et al., 2014), included trials of zinc supplementation throughout childhood. Up to age 12 years, found that zinc and supplementation was associated with a small, but significant increase in height and weight; in sub-analysis, these benefits persisted in groups aged 1-<5 and 5–<13 years, but not 6–<12 months (Mayo-Wilson et al., 2014).

In contrast to our study, Ramakrishnan et al., 2009, found no significant effect of zinc supplementation on height or weight gain in 43 studies of children under 5 years of age. They did, however, report a small positive effect (effect size = 0.06; 95% CI: 0.006, 0.11) on change in WHZ. This review differs from that ofours in that more half of their included than studies were conducted in infants (initial age below12 months) and some studies included small-for-gestational age infants. Previous metaanalyses of zinc supplementation in children aged <5 years, published in 2009, identified 43 trials with no significant effect on height weight or (Ramakrishnan et al., 2009).

Current review includes combined homogeneous studies to provide a precise estimate of zinc supplementation influence on growth measures in children. We attained high homogeneity in our meta-analyses through restricting the age group. We also excluded studies that involved anemic or malnourished children, lowbirth weight or small-for-gestational age children, as well as community trials.

Present review also recognized potential evidence for small study effects, and evaluated its impact using trim and fill methods. Our findings cannot exclude the possibility of publication bias, and our results should be interpreted in this light. However, small-study (asymmetrical effects funnel plots) cannot be equated with publication bias since such a pattern could also result from including true other factors heterogeneity in effect sizes and differences in populations or methodology (Higgins, 2011).

Potential limitations should be considered. As with all meta-analyses, our findings are based on available studies and their measurements. From another point of view, our comprehensive search of multiple literature databases together with citations of related articles made it unlikely that we missed any major studies and maximized statistical power. We did not formally assess whether long-term studies might have recruited a subset of subjects

who were acutely ill (e.g., diarrhea or pneumonia) at enrollment, which might have temporarily decreased initial zinc bioavailability. Although all studies included in our metaanalyses were undertaken in individuals without chronic disease or severe protein-energy malnutrition, other factors such as infection and inflammation may also have gone unreported. For instance, only one study screened and excluded participants with parasitic infection (Silva et al., 2006). We did not review the potential side effects of zinc supplementation or biochemical indicators such as serum or plasma which are zinc concentration. relevant questions for future investigations. In addition, since most trials did not havedata on baseline plasma zinc concentrations, we were not able to study the influence of baseline zinc status on the effect of zinc supplementation.

Another limitation include the absence of large well-designed trials, lack of studies in Egypt as well as studies that attempt to give zinc under fasting conditions to avoid the influence of dietary factors like phytate on zinc bioavailability. The lack of data provided on baseline nutritional status thatmake it hard to identify the conditions under which these interventions may be useful.

Finally yet importantly, our systematic review and metaof randomized analysis controlled trials reveals that zinc supplementation in children improves specific growth outcomes, with potentially effects of stronger supplementation in children after the age of 2 years.

CONCLUSION

The methods used to manage this review were precise and powerful, allowing only the most accurate and well-designed studies to be included, while reducing the impact that confounding factors may have. Our findings support a role of zinc for child growth outcomes in infants and children under five years of age. The modest effect size we identified may not justify universal zinc supplementation. Although, larger effects may be observable among children with sub-optimal zinc status.

In conclusion, our review suggests that zinc supplementation has a positive effect on linear growth especially when supplemented in a mean dose of 8.5 mg/day for a mean duration of 38.9 weeks led to an increase gain in length by 1.37 cm among children aged ≥ 2 years.

Our results also highlight a need for further trials and studies to confirm the potential stronger benefit on child growth after age of two years, especially as most existing trials focused on the first 1000 days of life.

Our novel findings notify policy recommendations and program development for zinc supplementation to improve stunting among young children. Our policy is to administer zinc orally as a supplement for preschool children aged from 2-5 years with a dose "RDA" of 3mg and 5 mg daily for children aged 2-3 years and 4-5 years respectively. Since, the body is not able to store excess zinc, so continuous dietary intake is further required.

Clinical relevance of results: Since the results suggest that zinc supplementation has a positive effect on linear growth so it can be concluded that oral zinc supplement for preschool children aged from 2-5 years is recommended. However, these recommendations should be taken with caution since the study indicates limitations in the current evidence.

REFERENCES

Abdollahi M; Ajami M; Abdollahi Z; Kalantari N; Houshiarrad A; Fozouni F; Fallahrokni A and Mazandarani FS (2019):

> Zinc supplementation is an effective and feasible strategy to prevent growth retardation in 6 to 24 month children: A pragmatic double blind, randomized trial. *Heliyon.* 1;5(11):e02581.

Bates CJ; Bates PH; Dardenne M; Prentice A; Lunn PG; Northrop-Clewes CA; Hoare S; Cole TJ; Horan SJ; Longman SC and Stirling D A(1993):

TrialofzincsupplementationinyoungruralGambianchildren.BritishJournalofNutrition.;69(1):243-55.

Black RE; Allen LH; Bhutta ZA; Caulfield LE; de Onis M; Ezzati M Mathers C and Rivera J (2008):

Maternal	and	Child
Undernutri	tion	Study

Group. Maternal and child undernutrition: global and regional exposures and health consequences. *Lancet*; 371(9608):243-60.

Brown KH; Engle-Stone R; Krebs NF and Peerson JM (2009):

Dietary intervention strategies to enhance zinc nutrition: promotion and support of breastfeeding for infants and young children. *Food and nutrition bulletin* (1_suppl1):S144-71.

Brown KH; Peerson JM; Baker SK and Hess SY (2009):

Preventivezincsupplementationamonginfants, preschoolers, andolder prepubertal children.Foodandnutritionbulletin;30(1_suppl1):S12-40.

Brown KH; Peerson JM; Rivera J and Allen LH (2002):

Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of

randomized controlled trials. *The American journal of clinical nutrition.* 1; 75(6):1062-71.

Cash R and Patel V (2020):

Has COVID-19 subverted global health?. *The Lancet*.30; 395 (10238): 16878.

Gera T; Shah D and Sachdev HS (2018):

Impact of water, sanitation and hygiene interventions on growth, non-diarrheal morbidity and mortality in children residing in lowand middle-income countries: a systematic review. *Indian pediatrics*; 55(5):381-93.

Hashad R (2019):

Changes in height-for-age of Egyptian children 1995 to 2014. Economic Research Forum (ERF).

Higgins JPTG (2011):

Cochrane handbook for systematic reviews of interventions version 5.1. 0 [updated March 2011]. The

Gihan Fouad Ahmad, Hanaa Sabry Ahmed and Enas Sayed Abbas

cochrane colla-boration; 20011.

Higgins JP; Thomas J; Chandler J; Cumpston M; Li T; Page MJ and Welch VA (2019):

Cochrane handbook for systematic reviews of interventions. John Wiley & Sons; 23.

Huynh P; Tran TN; Roger M; Marie N; Le TH; Do Thi BH; Hong NM; Le Danh T; Jacques B and Frank TW(2014):

"Development and implementation of a locally produced ready-touse therapeutic food (RUTF) in Vietnam." *Food and Nutrition Bulletin* 35.2 _ suppl1: S52-S56.

Ikeda N; Irie Y and Shibuya K (2013):

Determinants of reduced child stunting in Cambodia: analysis of pooled data from three demographic and health surveys. *Bull World Health Organ*; 91(5):341– 9.

Imdad A and Bhutta ZA (2011):

Effect of preventive zinc supplementation on linear growth in children under 5 years of age in developing countries: a meta-analysis of studies for input to the lives saved tool. *BMC public health*; 11(3):1-4.

Larson CP; Roy SK; Khan AI; Rahman AS and Qadri F (2008):

Zinc treatment to underfive children: applications to improve child survival and reduce burden of disease. *Journal of health, population, and nutrition;* 26(3):356.

Liu E; Pimpin L; Shulkin M; Kranz S; Duggan CP; Mozaffarian D and Fawzi WW (2018):

Effectofzincsupplementationongrowthoutcomesoutcomesinchildrenunder5 yearsofage.Nutrients;10(3):377.

Mayo-Wilson E; Junior JA; Imdad A; Dean S; Chan XH; Chan ES; Jaswal A and Bhutta ZA (2014):

Zinc supplementation for preventing mortality, morbidity, and growth failure in children aged 6 months to 12 years of age. Cochrane Database of Systematic Reviews. 2014(5).

Mwangome MK and Berkley JA (2014):

The reliability of weightfor-length/height Z scores in children. *Maternal & child nutrition*; 10 (4):474-80.

Nishi Y (1996):

Zinc and growth. *Journal of the American College of Nutrition*.1; 15(4):340-4.

O'Connor JP; Kanjilal D; Teitelbaum M; Lin SS and Cottrell JA (2020:

Zinc as atherapeutic agent in bone regeneration. *Materials*; 13(10):2211.

Ramakrishnan U; Nguyen P and Martorell R (2009):

Effects of micronutrients on growth ofchildren under 5 y of age: meta-analyses of single and multiple nutrient interventions.*The American journal of clinical nutrition*. 1; 89 (1):191-203.

Saleh SM; Khairy SA; Salam HA and Soliman AS (2020):

Dietary intake of a sample of stunted Egyptian preschool children. *Journal of Medicine in Scientific Research.* 1; 3(4):241.

Schaible UE and Stefan HE (2007):

Malnutrition and infection: complex mechanisms and global impacts. *PLoS med*. 1;4(5):e115.

Silva AP; Vitolo MR; Zara LF and Castro CF (2006):

Effects of zinc supplementation on1-to 5year old children. *J Pediatr* (Rio J). 26; 82(3):227-31.

Stewart CP; Iannotti L; Dewey KG; Michaelsen KF and Onyango AW (2013):

Contextualizing complementary feeding in a broader framework for stunting prevention. *Maternal & child nutrition*;9:27-45.

Underwood LE (1999):

Special considerations in the design of trials involving children. *The Journal of nutrition*. 1; 129(1):264S-9S.

World Health Organization. UNICEF/WHO/ (2020):

The World Bank Group joint child malnutrition estimates: levels and trends in child malnutrition: key findings of the 2020 edition.

World Health Organization WHO (2018):

Global report on urban health: equitable healthier cities for sustainable development. (http://www.who.int/kobe centre/measuring/urbanglobalreport/ugr_full_report.pdf, accessed 22 January 2018).

World Health Organization WHO (1995):

World health organization physical status: the use and interpretation of anthropometry.

Yu KH (2007):

A study on the nutrient intakes and zinc nutritional status of preschool children in Ulsan. *Journal of Nutrition and Health*; 40 (4):385-94.

Gihan Fouad Ahmad, Hanaa Sabry Ahmed and Enas Sayed Abbas

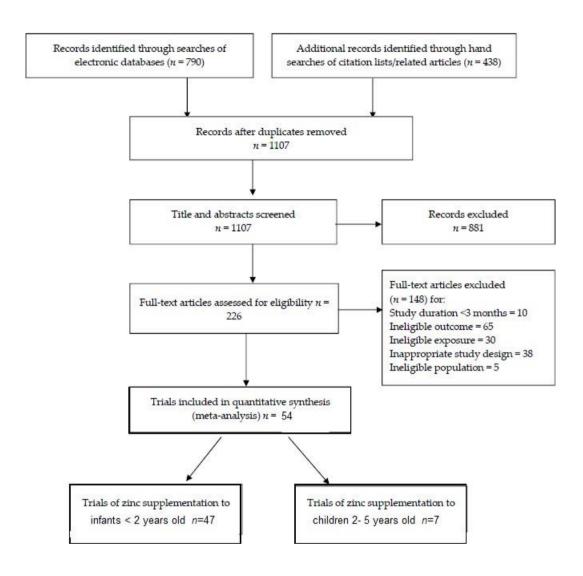


Figure 1. PRISMA Flowchart of study selection and inclusion.

Table 1. Summary of 54 randomized controlled trials included in the meta-analysis of the effect of zinc supplementation during infancy, or childhood on growthoutcomes.

		Infants (<2 Years)	Children (2-5 Years)
Trials ¹ , n		47	7
Total participants, n		20,412	773
Subject socioeconomic status ²		Low, 37; Medium, 6; High, 3; -, 1	Low, 5; Medium, 1; High, 0; -, 1
Mean age (range) Mean gestational age, weeks (range)		8.7 (0-23.5) months	43.4 (28.7–55.8) months
Mean supplement duration, weeks (range)		30.9 (12.0-78.0)	38.9 (26.0-64.5)
Mean duration to last f/u, weeks (range)		34.7 (12.0-87.0)	43.8 (26.0-64.5)
Mean zinc dose, mg/day (range)		7.6 (2.0–20.0)	8.5 (0.37-20.0)
Zinc Formulation	4	Acetate, 5; Gluconate 6; Sulfate 30, unknown 6	Gluconate, 1; Methionine, 1; Sulfate, 5
Growth outcomes		Weight, Height, WAZ, WHZ, HAZ, stunting, wasting, underweight	Weight, Height, WAZ, WHZ, HAZ, stunting, wasting, underweight
Quality score ³ , n trials		Low, 6; Medium, 10; High, 31	Low, 1; Medium, 0; High, 6

LBW = *Low birth weight; WAZ* = *Weight-for-age; WHZ* = *Weight-for-Height; HAZ* = *Height-for-age; BW* = *Birthweight; - indicates information is unavailable.*

First author	Year	Country	study score*
Walravens	1983	USA	4
Matsuda	1984	Japan	1
Walravens	1989	USA	5
alravens	1992	France	5
Shrivastava	1992	India	2
Bates	1993	Gambia	6
Castillo-Duran	1994	Chile	4
Dirren	1994	Ecuador	5
Castillo-Duran	1995	Chile	5
Ninh	1996	Vietnam	5
Rosado	1997	Mexico	5
Rivera	1997	Guatemala	5
Gardner	1997	Jamaica	5
Kikafunda	1998	Uganda	5
Hershkovitz	1999	Israel	5
		Papua	
Shankar	2000	Guinea	6
Osendarp	2001	Bangladesh	5
Dijkhuizen	2001	Indonesia	6

Table 2: Characteristics of infant and child trials

Castillo-Duran	2001	Chile	4
Yang	2002	China	3
Muller	2003	Burkina Faso	6
Sur	2003	India	6
Penny	2004	Peru	6
Black	2004	Bangladesh	5
Alarcon	2004	Peru	5
Black	2004	India	4
Lind	2004	Indonesia	6
Gardner	2005	Jamaica	2
Brooks	2005	Bangladesh	5
Berger	2006	Vietnam	6
Heinig	2006	USA	6
Silva	2006	Brasil	4
Olney	2006	Tanzania	3
Wasantwisut	2006	Thailand	6
Brown	2007	Peru	4
Garenne	2007	Burkina Faso	2
Fahmida	2007	Indonesia	6
		Indonesia	
Diilduuizon	2008	Thailand Vietnam	4
Dijkhuizen Wuehler	2008 2008	Ecuador	4 4
Bueno	2008		-
Dueno	2000	Spain	4

Gihan Fouad Ahmad, Hanaa Sabry Ahmed and Enas Sayed Abbas

2009	Bangladesh	5
2009	Iran	5
2009	India	5
2009	India	6
2010	Guatemala	5
2011	Iran	6
2012	China	2
2013	India	5
2013	Ghana	1
2013	Pakistan 6	
2014	Peru 6	
2014	Indonesia6	
2014	Iran -2	
2016	Tanzania 6	
	2009 2009 2010 2011 2012 2013 2013 2013 2014 2014 2014	2009 Iran 2009 India 2009 India 2010 Guatemala 2011 Iran 2012 China 2013 India 2013 Ghana 2013 Pakistan 6 2014 Peru 6 2014 Indonesia6 2014 Iran -2

Gihan Fouad Ahmad, Hanaa Sabry Ahmed and Enas Sayed Abbas

Table 3. Main and subgroup analyses of zinc supplementation duringinfancy/childhood on height and HAZ.

			Height (c					HAZ	_	
	n	MD (95%CI)	<i>I</i> ²	τ^2	P-interaction ¹	n	MD (95%CI)	<i>I</i> ²	τ^2	P-interaction
Overall	40	0.23	66.9%	0.10		40	0.02	66.1%	0.00	
		(0.09–0.38)					(-0.01, 0.06)			
Child age at inte	rvention									
0–<2 years	33	0.10	44.7%	0.03	0.002	34	0.01	64.6%	0.00	0.06
		$(-0.02\ 0.22)$					(-0.03, 0.04)			
2–5 years	7	1.37	- 82.0%	0.82		6	0.12	0.0%	0.00	
-	-	(0.50, 2.25)				_	(0.05, 0.19)			
World region										
Africa	5	0.07	58.4%	0.09	0.86	5	0.05	78.9%	0.02	0.63
	0	(-0.35, 0.49)	0011/0	0.05	0.00	0	(-0.09, 0.19)	101270	0.02	0.00
Asia	17	0.26	78.4%	0.13		15	-0.02	49.2%	0.00	
		(0.03, 0.48)	- /0.1/0	0.15		15	(-0.06, 0.02)	47.270	0.00	
Western	6	0.53	0.0%	0.00		6	0.05	61 09/	0.10	
		(0.19-0.88)	0.0%	0.00		0	(-0.07, 0.18)	61.0%	0.10	
Americas	10	0.25	40.00/	0.09			0.06	49.6%	0.10	
Americas	12	(-0.03, 0.53)	48.8%	0.09		14	(-0.03, 0.14)	49.6%	0.10	
cioeconomic stat	us									
		0.18					0.03			
Lower	31 -	(0.03, 0.32)	60.6%	0.07	0.43	32	(-0.02, 0.07)	69.1%	0.01	0.99
		0.88					0.03			
Medium	5 -	(0.18-1.59)	89.2%	0.46		4	(-0.03, 0.07)	0.0%	0.00	
		. ,								
Higher	3 -	0.14	0.0%	0.00		2	0.13	72.3%	0.06	
		(-0.81, 1.08)					(-0.26, 0.53)			
Unknown	1 .	0.10		0.00		2	0.13	72.3%	0.07	
Charlown		(-1.58, 1.78)		0.00		-	(-0.26, 0.53)	/ 2.0 /0	0.07	
tervention Durat	tion									
26 1		0.11	26.60				0.05	20.40	0.01	
<26 weeks	11 .	(-0.10, 0.31)	36.6%	0.03	0.79	9	(-0.06, 0.16)	39.4%	0.01	0.78
		0.27					0.02			
≥26 weeks	29 -	(0.08, 0.48)	71.6%	0.15		31	(-0.02, 0.06)	- 69.8%	0.01	
		(0.00, 0.40)					(-0.02, 0.00)			
ervention dose							0.0 1			
<8.4mg/day	18	0.37	74.5%	0.28	0.67	17	-0.01	67.2%	0.00	0.23
		(0.05, 0.70)					(-0.05, 0.04)			
≥8.4 mg/day	22 -	0.19	58.2%	0.05		23	0.05	- 53.4%	0.01	
		(0.03, 0.35)	-				(-0.00, 0.10)	-		
nc formulation										
		0.68					-0.05			
Acetate	3	(-0.06, 1.42)	69.9%	0.28	0.86	4	(-0.11, 0.11)	0.0%	0.09	0.58
	-	(-0.54, 0.34)						-		
		0.23				_	-0.01	69.4%		
Gluconate	6.	(-0.24, 0.70)	89.2%	0.22		5	(-0.05, 0.02)		- 0.00	
		0.59					0.19			
Methionine	1 -		NA	NA		1	-		- 0.00	
		(-1.12, 2.29)					(-0.10, 0.49)	50 - 01		
Sulfate	25	0.23	46.0%	0.05		27	0.03	72.3%	0.06	
		(0.06, 0.40)					(-0.01, 0.08)			
Unknown	4 .	-0.01	75.2%	0.27		3	-0.05	0.0%	0.00	
e nanown		(-0.64, 0.61)	. 0.2 /0	0.27		0	(-0.11, 0.01)	01070	0.00	

1 p value for heterogeneity between subgroups based on meta-regression analysis.

Table 4. Main and subgroup analyses of zinc supplementation regarding publication year and quality score of the study during infancy/childhood on heightand HAZ.

			Height (cr	n)				HAZ		
	n	MD (95%CI)	I ²	τ^2	P-interaction ¹	n	MD (95%CI)	I ²	τ^2	P-interaction ¹
Publication year										
Before 2000	13	0.58	30.5%	0.12	0.08	11	0.18	34.6%	0.00	0.002
Defore 2000	10	(0.20, 0.95)	00.070	0.12	0.00		(0.08, 2.29)	01.070	0.00	0.002
2000 and after	27	0.15	68.6%	0.08		29	-0.01	60.3%		
2000 and arter	21	(0.001, 0.30)	- 00.070	0.00		2)	(-0.04, 0.03)	. 00.0 /0		
Quality score ²										
_≤2	6	0.80	83.4%	1.45	0.23	3	-0.07	44.6%	0.02	0.33
	Ū	(-0.33, 1.92)	00.170	1.15	0.25	5	(-0.33, 0.20)	11.0 /0	0.02	0.00
3~4 7	7	0.25	60.6% 0.	0.04		9	-0.02	27.7%	0.00	
	'	(0.03, 0.48)	00.070	0.01		,	(-0.07, 0.04)		0.01	
≥5 27	27	0.18	60.8%	0.11		28	0.04	72.7%	0.00	
	4	(-0.01, 0.37)	00.070	0.11		20	(0.00, 0.09)	14.1 /0	0.00	
đ							0			

1 p value for heterogeneity between subgroups based on meta-regression analysis;2 Cumulative score (out of -6 to +6) on Cochrane Risk of Biastool.

						Mean	%
author	year	country	int_zn_form	N_total		difference (95% CI)	Weigh
Bates	1993	Gambia	gluconate	97		-2.40 (-4.12, -0.68)	0.66
Matsuda	1984	Japan	1.	39		-0.75 (-2.80, 1.30)	0.48
Gardner	2005	Jamaica	sulfate	114		-0.70 (-2.50, 1.10)	0.61
Mazariegos	2010	Guatemala	25	384	+	-0.50 (-1.01, 0.01)	3.49
Radhakrishna	2013	India	sulfate	296	heeta	-0.40 (-1.11, 0.31)	2.53
Taneia	2009	India	gluconate	2226	-	-0.12 (-0.26, 0.02)	5.65
Wasantwisut	2006	Thailand	sulfate	607		-0.10 (-0.49, 0.28)	4.27
Lind	2004	Indonesia	sulfate	549	+	-0.10 (-0.56, 0.36)	3.78
Fischer Walker	2009	Bangladesh		566	-	-0.10 (-0.54, 0.34)	3.90
Diikhuizen	2001	Indonesia	8	360	+	-0.04 (-0.56, 0.48)	3.44
Berger	2008	Vietnam	sulfate	770	-	-0.00 (-0.35, 0.35)	4.46
Brown	2007	Peru	sulfate	175	-	0.00 (-0.31, 0.31)	4.72
Diikhuizen	2008	Indonesia Thailand Vietnam	sulfate	2451		0.05 (-0.08, 0.18)	5.67
Soofi	2013	Pakistan	oluconate	1305		0.09 (-0.48, 0.66)	3.19
Bueno	2008	Spain	sulfate	30		0.10 (-1.58, 1.78)	0.69
Wuehler	2008	Ecuador	sulfate	208	•	0.10 (-0.19, 0.39)	4.87
Heinia	2008	USA	sulfate	70		0.10 (-1.10, 1.30)	1.23
Muller	2003	Burkina Faso	sulfate	661		0.10 (-0.23, 0.43)	4.61
Osendarp	2001	Bangladesh	acetate	270		0.10 (-0.38, 0.58)	3.68
Kikafunda	1998	Uganda	sulfate	153		0.15 (-1.58, 1.88)	0.66
Owusu-Aqvei	2013	Ghana	duconate	167	•	0.20 (0.01, 0.39)	5.39
Alarcon	2013	Peru	sulfate	213		0.20 (-1.75, 2.15)	0.53
Penny	2004	Peru	duconate	146		0.30 (-0.15, 0.75)	3.82
Gardner	1997	Jamaica	sulfate	61		0.30 (-0.96, 1.56)	1.13
Abdollahi	2014	Iran	sulfate	593			1.63
Rosado	1997	Mexico	methionine	194		0.50 (-0.49, 1.49) 0.59 (-1.12, 2.29)	0.67
Walravens	1983	USA	sulfate	40		and the second sec	373740
311110-1	2002	China	suitate	116		0.61 (0.22, 1.00)	4.19
Yang Walravens	1992	France	sulfate	57	L.T.	0.63 (0.20, 1.07)	3.96
		3.9		661		0.70 (-0.69, 2.09)	
Garenne	2007	Burkina Faso	sulfate			0.80 (-0.60, 2.20)	0.94
Rivera	1997	Guatemala	and the second	89	Tel .	0.80 (-0.60, 2.20)	0.95
Castillo-Duran	1994	Chile	sulfate	38		0.81 (-0.10, 1.73)	1.82
Dirren	1994	Ecuador	sulfate	96	-	0.81 (0.28, 1.35)	3.35
Brooks	2005	Bangladesh	acetate	638	.	0.90 (0.32, 1.48)	3.09
Ninh	1996	Vietnam	sulfate	146		1.10 (-0.62, 2.82)	0.66
Walravens	1989	USA	sulfate	50	12	1.40 (-0.91, 3.71)	0.39
Castillo-Duran	1995	Chile	acetate	68		1.50 (0.17, 2.83)	1.03
Aminisani	2011	Iran	sulfate	76	•	1.78 (0.11, 3.45)	0.70
Mozaffari-Khosravi	2009	Iran	sulfate	85		2.02 (0.99, 3.04)	1.56
Chen		China	gluconate	181	-	5.00 (3.21, 6.79)	0.62
Overall (I-squared =	66.9%,	p = 0.000)			0	0.23 (0.09, 0.38)	100.00

Favors control Favors supplementation

Mean difference in height (cm) for zinc supplemented vs control group

Figure 2. Effect of zinc supplementation among children aged < 5 y old on heightin randomized controlled trials.

æ

Bueno Castillo-Duran Owusu-Agyei Gardner Silva	1999 2008 2001	Israel	acetate				
Bueno Castillo-Duran Owusu-Agyei Gardner Silva	2008		acetate	25	_	-0.41 (-1.40, 0.58)	0.12
Castillo-Duran Owusu-Agyei Gardner Silva	1.1.20.2.2.4	Spain	sulfate	30		-0.40 (-0.98, 0.18)	0.35
Owusu-Agyei Gardner Silva		Chile	sulfate	112	-[+]-	-0.37 (-0.68, -0.06)	1.07
Gardner Silva	2013	Ghana	gluconate	167		-0.33 (-0.94, 0.28)	0.32
Silva	2005	Jamaica	sulfate	114	Ĩ <u>↓</u>	-0.18 (-0.46, 0.10)	1.32
	2006	Brasil	sulfate	58 —		0.10 (-1.22, 1.02)	0.10
ind	2004	Indonesia	sulfate	666	.	-0.10 (-0.20, 0.01)	4.34
	2013	India	sulfate	296		-0.08 (-0.10, -0.06)	7.10
	2001	Indonesia	Searce	360		-0.08 (-0.25, 0.10)	2.58
	2004	Bangladesh	acetate	186		-0.06 (-0.32, 0.21)	1.40
100 B 100	2010	Guatemala	average	384		-0.05 (-0.27, 0.17)	1.84
	2008	Tanzania	-	212		-0.05 (-0.11, 0.02)	5.71
,	2006	Vietnam	- sulfate	770		-0.04 (-0.15, 0.08)	4.06
	2008	Indonesia Thailand Vietnam	sulfate	2451		-0.02 (-0.09, 0.05)	5.71
*	2008	USA	sulfate	70		-0.02 (-0.05, 0.01)	6.82
	1998		sulfate	153			
	2009	Uganda India		2226		-0.02 (-0.32, 0.28)	1.18 6.74
			gluconate			-0.02 (-0.06, 0.02)	
	2006	Thailand	sulfate	607	11	-0.00 (-0.13, 0.12)	3.70
	2007	Peru	sulfate	175	1 +	0.01 (-0.09, 0.11)	4.45
	2008	Ecuador	sulfate	208		0.04 (-0.04, 0.12)	5.17
	2016	Tanzania	sulfate	2400		0.05 (-0.05, 0.14)	4.64
	2004	Peru	gluconate	146	L	0.06 (-0.08, 0.20)	3.34
	1997	Guatemala	sulfate	89		0.06 (-0.36, 0.48)	0.64
	2007	Indonesia	sulfate	353		0.07 (-0.12, 0.26)	2.36
	1994	Chile	sulfate	37		0.07 (-0.47, 0.62)	0.40
	1983	USA	sulfate	40	<u>*</u>	0.08 (-0.02, 0.18)	4.62
	2000	Papua New Guinea	gluconate	212		0.08 (-0.23, 0.39)	1.12
	2001	Bangladesh	acetate	198	+ ++	0.10 (-0.18, 0.38)	1.31
	2014	Peru	sulfate	209		0.10 (-0.16, 0.36)	1.48
	2014	Indonesia	sulfate	24	1+1	0.10 (-0.18, 0.38)	1.27
	2012	China	gluconate	181	TEL	0.14 (-0.13, 0.41)	1.40
	1997	Mexico	methionine	194	<u>∏+</u> -∏	0.19 (-0.10, 0.49)	1.21
	1994	Ecuador	sulfate	96	王	0.20 (0.06, 0.34)	3.32
	2004	India	sulfate	162	↓↓●↓↓	0.20 (-0.14, 0.54)	0.94
Alarcon	2004	Peru	sulfate	213	[] • []	0.20 (-0.11, 0.51)	1.12
Muller	2003	Burkina Faso	sulfate	661		0.26 (0.13, 0.39)	3.72
Ninh	1996	Vietnam	sulfate	146	L+++1	0.29 (0.02, 0.56)	1.37
Walravens	1992	France	sulfate	57	<u> </u>	0.40 (-0.03, 0.83)	0.61
Walravens	1989	USA	sulfate	50		0.40 (-0.03, 0.83)	0.61
Castillo-Duran	1995	Chile	acetate	68		0.81 (0.30, 1.32)	0.45
Overall (I-square	d = 66.	1%, p = 0.000)			P	0.02 (-0.01, 0.06)	100.0

Mean difference in HAZ (z-score) for zinc supplemented vs control group Figure 3. Effect of zinc supplementation among children aged < 5 y old on HAZ in randomized controlled trials.

Black 2004 India suitate 162	author	year	country	Int_zn_form	N_total		Mean difference (95% CI)	% Weight
Rivera 1997 Guatemala sufate 89 -0.19 (40.51, 0.13) 1.50 Dirren 1994 Ecuador sufate 96 -0.13 (40.27, 0.01) 4.47 Fahmida 2007 Indonesia sufate 353 -0.11 (40.38, 0.16) 197 Heing 2006 USA sufate 70 -0.06 (-0.18, 0.07) 4.47 Castlio-Duran 2001 Chile sufate 112 -0.06 (-0.18, 0.07) 4.90 Wasantikut 2006 Tanzania sufate 607 -0.05 (-0.25, 0.24) 2.32 Mazanegos 2010 Guatemala . 384 -0.05 (-0.25, 0.24) 2.32 Wuelvier 2008 Ecuador sufate 208 0.01 (-0.10, 0.13) 5.22 Mulier 2008 Indonesia naliand Vietnam aoetate 186 -0.00 (-0.25, 0.24) 2.32 Dijkhuizen 2001 India gluconate 225 0.01 (-0.10, 0.10) 7.27 Taneja 2009	Chen	2012	China	gluconate	181		-0.41 (-0.71, -0.11)	1.69
Dirren 1934 Ecuador sulfate 96 -0.13 (-0.27, 0.01) 4.47 Fahmida 2007 Indonesia sulfate 353 -0.11 (-0.38, 0.16) 1.97 Heinig 2006 USA sulfate 70 -0.10 (-0.15, -0.05) 7.78 Castilo-Duran 2001 Chile sulfate 112 -0.06 (-0.18, 0.07) 4.90 Jocks 2016 Tanzania sulfate 607 -0.05 (-0.17, 0.07) 5.20 Mazariegos 2010 Guatemaia . 384 -0.00 (-0.25, 0.24) 2.32 Muler 2003 Burkina Faso sulfate 208 -0.01 (-0.10, 0.12) 5.39 Dijkhuizen 2001 Indonesia . 360 -0.01 (-0.10, 0.12) 5.39 Dijkhuizen 2001 Indonesia . 360 -0.01 (-0.10, 0.12) 5.39 Dijkhuizen 2001 Indonesia . 360 -0.01 (-0.10, 0.20 2.02 Muler 2003 Burkino <	Black	2004	India	sulfate	162		-0.20 (-0.48, 0.08)	1.92
Fahmida 2007 Indonesia sufate 353 -0.11 (-0.38, 0.16) 1.97 Heinig 2005 USA sufate 70 -0.10 (-0.15, -0.05) 7.78 Castilo-Duran 2001 Chile sufate 112 -0.08 (-0.42, 0.26) 1.39 Locks 2016 Tanzania sufate 2000 -0.05 (-0.17, 0.07) 5.20 Mazariegos 2010 Guatemaia . 384 -0.01 (-0.10, 0.12) 5.30 Black 2004 Bangladesh acetate 166 -0.00 (-0.25, 0.24) 2.32 Muler 2005 Indonesia n.adetate 206 -0.01 (-0.10, 0.12) 5.39 Dijkhuizen 2001 Indonesia n.adia guconate 225 0.01 (-0.10, 0.12) 3.73 Dijkhuizen 2005 Indonesia guconate 157 0.05 (-0.00, 0.10) 7.27 Consul-Agyei 2013 Ghana guconate 158 0.07 (-0.15, 0.28) 2.77 Ouse (-0.02 <t< td=""><td>Rivera</td><td>1997</td><td>Guatemala</td><td>sulfate</td><td>89</td><td>- 1+14</td><td>-0.19 (-0.51, 0.13)</td><td>1.50</td></t<>	Rivera	1997	Guatemala	sulfate	89	- 1+14	-0.19 (-0.51, 0.13)	1.50
Heinig 2006 USA suifate 70 -0.10 (-0.15, -0.05) 7.78 Castilio-Duran 2001 Chile suifate 112 -0.08 (-0.42, 0.26) 1.39 Locks 2015 Tanzania suifate 607 -0.05 (-0.17, 0.07) 5.20 Mazariegos 2010 Gualemaia . 384 -0.05 (-0.25, 0.15) 3.03 Black 204 Bangladesh acetale 166 -0.00 (-0.25, 0.24) 2.32 Wueler 2008 Exuador suifate 661 -0.01 (-0.10, 0.12) 5.39 Dijkhuizen 2001 Indonesia . 360 -0.05 (-0.02, 0.00) 7.27 Taneja 2009 India guconate 225 0.05 (-0.00, 0.10) 7.27 Rosado 1997 Mexico methionine 194 -0.05 (-0.20, 0.10) 7.26 Rosado 1997 Mexico suifate 167 0.08 (-0.06, 0.22) 4.52 Brown 2007 Peru suifate 146 0.09 (-0.12, 0.30) 2.83 Ninh 1996 <td>Dirren</td> <td>1994</td> <td>Ecuador</td> <td>sulfate</td> <td>96</td> <td></td> <td>-0.13 (-0.27, 0.01)</td> <td>4.47</td>	Dirren	1994	Ecuador	sulfate	96		-0.13 (-0.27, 0.01)	4.47
Castilo-Duran 2001 Chile sulfate 112 -0.08 (-0.42, 0.26) 1.39 Looks 2015 Tarzania sulfate 2400 -0.06 (-0.18, 0.07) 4.90 Wasantwisut 2006 Thaland sulfate 607 -0.05 (-0.17, 0.07) 5.20 Mazariegos 2010 Guatemala . 384 -0.05 (-0.25, 0.15) 3.03 Black 2004 Bangladesh acetate 186 -0.00 (-0.25, 0.24) 2.32 Muler 2003 Burkina Faso sulfate 208 0.01 (-0.11, 0.13) 5.22 Muler 2003 Indonesia . 360 0.04 (-0.13, 0.21) 3.73 Dijkhuizen 2001 Indonesia . 360 0.04 (-0.10, 0.12) 5.39 Dijkhuizen 2005 Inda gluconate 225 0.05 (-0.00, 0.10) 7.75 Rosado 1997 Mexico methionine 194 0.09 (-0.12, 0.30) 2.83 Ninh 1996 Vienam	Fahmida	2007	Indonesia	sulfate	353	1++h	-0.11 (-0.38, 0.16)	1.97
Looks 2016 Tanzania suitate 2400 -0.06 (-0.18, 0.07) 4.90 Wasantvisut 2006 Thaland suitate 607 -0.05 (-0.17, 0.07) 5.20 Mazariegos 2010 Guatemala . 384 -0.05 (-0.25, 0.15) 3.03 Elack 2008 Ecuador suitate 208 0.01 (-0.11, 0.13) 5.22 Muler 2003 Burkina Faso suitate 208 0.01 (-0.10, 0.12) 5.39 Dijkhuizen 2001 Indonesia . 360 0.04 (-0.13, 0.21) 3.73 Dijkhuizen 2008 Indonesia suitate 2451 0.05 (-0.00, 0.10) 7.27 Taneja 2009 India gluconate 2225 0.05 (-0.00, 0.10) 7.56 Rosado 1997 Mexico methionine 194 0.07 (-0.15, 0.28) 2.77 Owusu-Agyei 2013 Ghana gluconate 157 0.09 (-0.12, 0.30) 2.83 Ninh 1996 Vetnam	Heinig	2006	USA	suifate	70	•	-0.10 (-0.15, -0.05)	7.78
Wasantwisut 2006 Thailand suffate 607 -0.05 (-0.17, 0.07) 5.20 Mazariegos 2010 Guatemaia . 384 -0.05 (-0.25, 0.24) 2.32 Mazariegos 2008 Ecuador suifate 208 -0.05 (-0.25, 0.24) 2.32 Muler 2008 Ecuador suifate 208 -0.01 (-0.10, 0.12) 5.39 Dijkhuizen 2001 Indonesia . 360 -0.02 (-0.25, 0.24) 2.32 Dijkhuizen 2001 Indonesia . 360 -0.01 (-0.10, 0.12) 5.39 Dijkhuizen 2005 Indonesia . 360 -0.05 (-0.00, 0.10) 7.27 Taneja 2009 India giuconate 225 0.05 (-0.00, 0.10) 7.56 Rosado 1997 Mexico methionine 194 0.07 (-0.15, 0.28) 2.77 Owusu-Agyei 2013 Ghana giuconate 157 0.09 (-0.12, 0.30) 2.83 Nnh 1996 Vietnam	Castilo-Duran	2001	Chile	suifate	112		-0.08 (-0.42, 0.25)	1.39
Mazarlegos 2010 Guatemala . 384 -0.05 (-0.25, 0.15) 3.03 Black 2004 Bangladesh acetate 186 -0.00 (-0.25, 0.15) 3.03 Wuehler 2008 Ecuador suitate 208 0.01 (-0.11, 0.13) 5.22 Muller 2003 Burkina Faso suitate 661 0.04 (-0.12, 0.12) 3.33 Dijkhulzen 2001 Indonesia . 360 0.04 (-0.10, 0.12) 5.39 Dijkhulzen 2009 India giuconate 2225 0.05 (-0.00, 0.10) 7.27 Taneja 2009 India giuconate 167 0.08 (-0.06, 0.22) 4.52 Brown 2007 Peru suitate 175 0.09 (-0.12, 0.30) 2.83 Ninh 1996 Vietnam suitate 186 0.09 (-0.12, 0.30) 2.82 Silva 2005 Brasil suitate 186 0.10 (-0.70, 0.90) 0.29 Gardher 2005 Jamaica suit	Locks	2016	Tanzania	sulfate	2400	-	-0.06 (-0.18, 0.07)	4.90
Black 2004 Bangladesh acetate 186 -0.00 (-0.25, 0.24) 2.32 Wuehler 2008 Ecuador suifate 208 0.01 (-0.11, 0.13) 5.22 Muler 2003 Burkina Faso suifate 661 0.01 (-0.10, 0.12) 5.39 Dijkhuizen 2001 Indonesia . 360 0.04 (-0.13, 0.21) 3.73 Dijkhuizen 2009 India giuconate 2225 0.05 (-0.00, 0.10) 7.27 Taneja 2009 India giuconate 167 0.08 (-0.06, 0.22) 4.52 Rosado 1997 Mexico methionine 194 0.09 (-0.12, 0.30) 2.83 Ninh 1996 Vietnam suifate 175 0.09 (-0.12, 0.30) 2.83 Silva 2005 Brasil suifate 198 0.10 (-0.70, 0.90) 0.29 Gendarp 2011 Bangladesh acetate 198 0.10 (-0.10, 0.30) 3.13 Walravens 1983 USA <t< td=""><td>Wasantwisut</td><td>2006</td><td>Thalland</td><td>sulfate</td><td>607</td><td></td><td>-0.05 (-0.17, 0.07)</td><td>5.20</td></t<>	Wasantwisut	2006	Thalland	sulfate	607		-0.05 (-0.17, 0.07)	5.20
Wuehler 2008 Ecuador sultate 208 0.01 (-0.11, 0.13) 5.22 Muller 2003 Burkina Faso sultate 661 0.01 (-0.10, 0.12) 5.39 Dijkhulzen 2001 Indonesia . 360 0.04 (-0.13, 0.21) 3.73 Dijkhulzen 2009 India gluconate 2226 0.05 (-0.00, 0.10) 7.27 Taneja 2009 India gluconate 2226 0.05 (-0.00, 0.10) 7.26 Rosado 1997 Mexico methionine 194 0.07 (-0.15, 0.28) 2.77 Owusu-Agyei 2013 Ghana gluconate 167 0.08 (-0.06, 0.22) 4.52 Brown 2007 Peru sultate 146 0.09 (-0.12, 0.30) 2.83 Ninh 1996 Vietnam sultate 58 0.10 (-0.10, 0.30) 3.13 Wairavens 1983 USA sultate 770 0.12 (0.02, 0.21) 5.99 Gardher 2005 Jamaica s	Mazarlegos	2010	Guatemala		384	+++++++++++++	-0.05 (-0.25, 0.15)	3.03
Muller 2003 Burkina Faso suifate 661 0.01 (-0.10, 0.12) 5.39 Dijkhuizen 2001 Indonesia . 360 0.04 (-0.10, 0.12) 5.39 Dijkhuizen 2008 Indonesia Thalland Vietnam suifate 2451 0.04 (-0.10, 0.10) 7.27 Taneja 2009 India giuconate 2226 0.05 (-0.00, 0.10) 7.56 Rosado 1997 Mexico methionine 194 0.09 (-0.15, 0.28) 2.77 Owusu-Agyei 2013 Ghana giuconate 167 0.08 (-0.06, 0.22) 4.52 Brown 2007 Peru suifate 146 0.09 (-0.12, 0.30) 2.83 Ninh 1996 Vietnam suifate 146 0.09 (-0.10, 0.30) 3.13 Walravens 1983 USA suifate 198 0.10 (-0.10, 0.30) 3.13 Walravens 1983 USA suifate 114 0.10 (-0.12, 0.32) 2.77 Berger 2005 Jamaica<	Black	2004	Bangladesh	acetate	186	₩	-0.00 (-0.25, 0.24)	2.32
Dijkhulzen 2001 Indonesia	Wuehler	2008	Ecuador	sulfate	208	+	0.01 (-0.11, 0.13)	5.22
Djkhulzen 2008 Indonesia Thalland Vietnam suifate 2451 0.04 (-0.02, 0.10) 7.27 Taneja 2009 india gluconate 2225 0.05 (-0.00, 0.10) 7.56 Rosado 1997 Mexico methionine 194 0.07 (-0.15, 0.28) 2.77 Owusu-Agyei 2013 Ghana gluconate 167 0.08 (-0.06, 0.22) 4.52 Brown 2007 Peru suifate 175 0.09 (-0.12, 0.30) 2.83 Ninh 1996 Vietnam suifate 146 0.09 (-0.12, 0.30) 2.82 Silva 2006 Brasil suifate 58 0.10 (-0.70, 0.90) 0.29 Osendarp 2001 Bangladesh aoetale 198 0.10 (-0.10, 0.30) 3.13 Walravens 1983 USA suifate 770 0.12 (0.02, 0.21) 599 Gardher 2005 Jamaica suifate 213 0.24 (-0.06, 0.54) 1.72 Lind 2004 Indonesia	Muller	2003	Burkina Faso	sulfate	661		0.01 (-0.10, 0.12)	5.39
Taneja 2009 India gluconate 2225 0.05 (-0.00, 0.10) 7.56 Rosado 1997 Mexico methionine 194 0.07 (-0.15, 0.28) 2.77 Owusu-Agyel 2013 Ghana gluconate 167 0.08 (-0.06, 0.22) 4.52 Brown 2007 Peru suifate 175 0.09 (-0.12, 0.30) 2.83 Ninh 1996 Vietnam suifate 146 0.09 (-0.12, 0.30) 2.82 Silva 2006 Brasil suifate 58 0.10 (-0.70, 0.90) 0.29 Osendarp 2001 Bangladesh aoetale 198 0.10 (-0.10, 0.30) 3.13 Walravens 1983 USA suifate 40 0.10 (-0.12, 0.32) 2.77 Berger 2005 Vietnam suifate 770 0.12 (0.02, 0.21) 5.99 Gardher 2005 Jamaica suifate 213 0.24 (-0.06, 0.54) 1.72 Lind 2004 Indonesia suifate <td>Dijkhuizen</td> <td>2001</td> <td>Indonesia</td> <td>32</td> <td>360</td> <td><u> + + - </u></td> <td>0.04 (-0.13, 0.21)</td> <td>3.73</td>	Dijkhuizen	2001	Indonesia	32	360	<u> + + - </u>	0.04 (-0.13, 0.21)	3.73
Rosado 1997 Mexico methionine 194 0.07 (-0.15, 0.28) 2.77 Owusu-Agyei 2013 Ghana giuconate 167 0.08 (-0.06, 0.22) 4.52 Brown 2007 Peru suitate 175 0.09 (-0.12, 0.30) 2.83 Ninh 1996 Vietnam suitate 146 0.09 (-0.12, 0.30) 2.82 Silva 2006 Brasil suitate 198 0.10 (-0.70, 0.90) 0.29 Osendarp 2001 Bangladesh acetale 198 0.10 (-0.10, 0.30) 3.13 Walravens 1983 USA suitate 40 0.10 (-0.10, 0.30) 3.13 Walravens 1983 USA suitate 770 0.12 (0.02, 0.21) 5.99 Gardher 2005 Jamaica suitate 114 0.14 (-0.05, 0.33) 3.25 Alarcon 2004 Peru suitate 213 0.24 (-0.06, 0.54) 1.72 Lind 2004 Indonesia suitate	Dijkhuizen	2008	Indonesia Thailand Vietnam	suifate	2451	+	0.04 (-0.02, 0.10)	7.27
Owusu-Agyel 2013 Ghana gluconate 167 0.08 (-0.06, 0.22) 4.52 Brown 2007 Peru suifate 175 0.09 (-0.12, 0.30) 2.83 Ninh 1996 Vietnam suifate 146 0.09 (-0.12, 0.30) 2.83 Silva 2006 Brasil suifate 58 0.10 (-0.70, 0.90) 0.29 Osendarp 2001 Bangladesh aoetale 198 0.10 (-0.10, 0.30) 3.13 Walravens 1983 USA suifate 770 0.12 (0.02, 0.21) 5.99 Gardher 2005 Jamaica suifate 114 0.14 (-0.05, 0.33) 3.25 Alarcon 2004 Peru suifate 213 0.24 (-0.06, 0.54) 1.72 Lind 2004 Indonesia suifate 30 0.30 (-0.24, 0.84) 0.61 Breno 2008 Spain suifate 30 0.30 (-0.24, 0.84) 0.61 Hershkovitz 1999 Israel aoetate	Taneja	2009	india	gluconate	2226	-	0.05 (-0.00, 0.10)	7.56
Brown 2007 Peru sultate 175 0.09 (-0.12, 0.30) 2.83 Ninh 1996 Vietnam sultate 146 0.09 (-0.12, 0.30) 2.83 Silva 2006 Brasil sultate 146 0.09 (-0.12, 0.30) 2.83 Silva 2006 Bangladesh acetate 198 0.10 (-0.70, 0.90) 0.29 Osendarp 2001 Bangladesh acetate 198 0.10 (-0.10, 0.30) 3.13 Walravens 1983 USA sultate 40 0.10 (-0.12, 0.32) 2.77 Berger 2006 Vietnam sultate 770 0.12 (0.02, 0.21) 5.99 Gardher 2005 Jamaica sultate 114 0.14 (-0.05, 0.33) 3.25 Alarcon 2004 Peru sultate 213 0.24 (-0.06, 0.54) 1.72 Lind 2004 Indonesia sultate 30 0.30 (-0.24, 0.84) 0.61 Beueno 2008 Spain sultate	Rosado	1997	Mexico	methionine	194	ليعي	0.07 (-0.15, 0.28)	2.77
Ninh 1996 Vietnam suifate 146 0.09 (-0.12, 0.30) 2.82 Silva 2006 Brasil suifate 58 0.10 (-0.70, 0.90) 0.29 Osendarp 2001 Bangladesh aoetate 198 0.10 (-0.70, 0.90) 0.29 Osendarp 2001 Bangladesh aoetate 198 0.10 (-0.10, 0.30) 3.13 Walravens 1983 USA suifate 40 0.10 (-0.12, 0.32) 2.77 Berger 2006 Vietnam suifate 770 0.12 (0.02, 0.21) 5.99 Gardner 2005 Jamaica suifate 114 0.14 (-0.05, 0.33) 3.25 Alarcon 2004 Peru suifate 213 0.24 (-0.06, 0.54) 1.72 Lind 2004 Indonesia suifate 30 0.30 (-0.24, 0.84) 0.61 Bueno 2008 Spain suifate 30 0.30 (-0.24, 0.84) 0.61 Hershkovitz 1999 Israel aoetate	Owusu-Agyel	2013	Ghana	gluconate	167	-	0.08 (-0.06, 0.22)	4.52
Silva 2006 Brasil suitate 58 0.10 (-0.70, 0.90) 0.29 Osendarp 2001 Bangladesh aoetate 198 0.10 (-0.70, 0.90) 0.29 Walravens 1983 USA suitate 40 0.10 (-0.10, 0.30) 3.13 Berger 2006 Vietnam suitate 40 0.10 (-0.10, 0.30) 3.13 Gardner 2005 Jamaica suitate 770 0.12 (0.02, 0.21) 5.99 Gardner 2005 Jamaica suitate 114 0.14 (-0.05, 0.33) 3.25 Alarcon 2004 Peru suitate 213 0.24 (-0.06, 0.54) 1.72 Lind 2004 Indonesia suitate 666 0.26 (0.09, 0.43) 3.68 Bueno 2008 Spain suitate 30 0.30 (-0.24, 0.84) 0.61 Hershkovitz 1999 Israel aoetate 25	Brown	2007	Peru	sulfate	175	4+4	0.09 (-0.12, 0.30)	2.83
Osendarp 2001 Bangladesh acetate 198 0.10 (-0.10, 0.30) 3.13 Walravens 1983 USA suifate 40 0.10 (-0.10, 0.30) 3.13 Berger 2006 Vietnam suifate 770 0.10 (-0.12, 0.32) 2.77 Gardher 2005 Jamaica suifate 114 0.14 (-0.05, 0.33) 3.25 Alarcon 2004 Peru suifate 213 0.24 (-0.06, 0.54) 1.72 Lind 2004 Indonesia suifate 30 0.30 (-0.24, 0.84) 0.61 Hershkovitz 1999 Israel acetate 25	Ninh	1996	Vietnam	sulfate	146	I	0.09 (-0.12, 0.30)	2.82
Walravens 1983 USA suifate 40 0.10 (-0.12, 0.32) 2.77 Berger 2006 Vietnam suifate 770 0.12 (0.02, 0.21) 5.99 Gardner 2005 Jamaica suifate 114 0.14 (-0.05, 0.33) 3.25 Alarcon 2004 Peru suifate 213 0.24 (-0.06, 0.54) 1.72 Lind 2004 Indonesia suifate 666 0.26 (0.09, 0.43) 3.68 Bueno 2008 Spain suifate 30 0.30 (-0.24, 0.84) 0.61 Hershkovitz 1999 Israel acetate 25 9 0.38 (-0.41, 1.17) 0.29	Silva	2006	Brasil	sulfate	58		0.10 (-0.70, 0.90)	0.29
Berger 2006 Vietnam suitate 770 0.12 (0.02, 0.21) 5.99 Gardner 2005 Jamaica suitate 114 0.14 (-0.05, 0.33) 3.25 Alarcon 2004 Peru suitate 213 0.24 (-0.06, 0.54) 1.72 Lind 2004 Indonesia suitate 666 0.26 (0.09, 0.43) 3.68 Bueno 2008 Spain suitate 30 0.30 (-0.24, 0.84) 0.51 Hershkovitz 1999 Israel acetate 25 9 0.38 (-0.41, 1.17) 0.29	Osendarp	2001	Bangladesh	acetate	198		0.10 (-0.10, 0.30)	3.13
Gardner 2005 Jamaica suifate 114 0.14 (-0.05, 0.33) 3.25 Alarcon 2004 Peru suifate 213 0.24 (-0.06, 0.54) 1.72 Lind 2004 Indonesia suifate 666 0.26 (0.09, 0.43) 3.68 Bueno 2008 Spain suifate 30 0.30 (-0.24, 0.84) 0.51 Hershkovitz 1999 Israel acetate 25 9 0.38 (-0.41, 1.17) 0.29	Walravens	1983	USA	sulfate	40	1+1	0.10 (-0.12, 0.32)	2.77
Alarcon 2004 Peru sulfate 213 0.24 (-0.06, 0.54) 1.72 Lind 2004 Indonesia sulfate 666 0.26 (0.09, 0.43) 3.68 Bueno 2008 Spain sulfate 30 0.30 (-0.24, 0.84) 0.61 Hershkovitz 1999 Israel acetate 25 5 0.38 (-0.41, 1.17) 0.29	Berger	2006	Vietnam	sulfate	770	+	0.12 (0.02, 0.21)	5.99
Lind 2004 Indonesia suifate 666 0.26 (0.09, 0.43) 3.68 Bueno 2008 Spain suifate 30 0.30 (-0.24, 0.84) 0.61 Hershkovitz 1999 Israel acetate 25 90.38 (-0.41, 1.17) 0.29	Gardner	2005	Jamaica	sulfate	114	4+4	0.14 (-0.05, 0.33)	3.25
Bueno 2008 Spain sulfate 30 Image: mail of the sulfate 0.30 (-0.24, 0.84) 0.61 Hershkovitz 1999 Israel acetate 25 Image: mail of the sulfate 0.38 (-0.41, 1.17) 0.29	Alarcon	2004	Peru	sulfate	213	Tel	0.24 (-0.06, 0.54)	1.72
Hershkovitz 1999 Israel acetate 25	Lind	2004	Indonesia	suifate	666	1+	0.26 (0.09, 0.43)	3.68
	Bueno	2008	Spain	suifate	30		- 0.30 (-0.24, 0.84)	0.61
Overall (H-squared = 56.1%, p = 0.000) 0.02 (-0.03, 0.06) 100.00	Hershkovitz	1999	Israel	acetate	25			0.29
	Overall (I-squa	red = 56.	1%, p = 0.000)			1	0.02 (-0.03, 0.06)	100.00

Mean difference in WHZ (z-score) for zinc supplemented vs control group

Figure 4. Effect of zinc supplementation among children aged < 5 y old on WHZin randomized controlled trials.

Gihan Fouad Ahmad, Hanaa Sabry Ahmed and Enas Sayed Abbas

تحليل دراسى إحصائى للدراسات البحثية عن مكملات الزنك والتقزم في الأطفال عمر هم أقل من خمس سنوات جيهان فؤاد احمد ١، هذاء صبرى احمد ٢ وايناس سيد عباس٣ ١ عميد المعهد القومي للتغذية- القاهرة - مصر ٢ جامعة هارفرد ٣ قسم التغذية الاكلينيكية - المعهد القومي للتغذية -القاهرة - مصر

الملخص العربى

معدل التقزم في الأطفال المصريين يصل إلي ٢١ %. تقزم الأطفال تعد مشكلة معقدة نتيجة أسباب متعددة خاصا الغذاء الناقص وغير متوازن و عدم تناول كميات كافية من الفيتامينات و المغذيات الدقيقة. إمكانية تقليل التقزم عن طريق العديد من التعديلات الغذائية مثل تناول المكملات المحتوية علي الزنك. حيث يعد عنصر الزنك من المعادن الهامة في نمو الطبيعي للعظام. هدف البحث هو معرفة قابلية وفاعلية تناول مكملات الزنك في تقليل معدل التقزم عن طريق البحث في المراجع الالكترونية البحثية عن الدراسات والمحاولات البحثية الإكلينيية الدولية في تاثير تناول مكملات الزنك في المراجع والأطفال أقل من خمس سنوات في العمر مع إنباع المعايير المطلوبة للتحليل الأحصائي للدر اسات البحثية في الرضع والأطفال أقل من خمس سنوات للأبحاث. قد نتج عن ذلك اربع و خمسون دراسة نهائية. ووجد أن تناول مكملات الزنك لها تأثير كبير علي يساوي سنتين في العمر كان في سبع دراسات إكلينيكية؟؟ المحاب والتقرير أل بلاحاث. قد نتج عن ذلك اربع و خمسون دراسة نهائية. ووجد أن تناول مكملات الزنك لها تأثير كبير علي أل بلاجاث. أن 11 معايير المطلوبة للتحليل الأحصائي للدر اسات البحثية في الأطفال أقل من خمس سنوات أريادة الطول بشكل واضح في الأطفال أكثر بالمقارنة بالرضع. أن معدل زيادة الطول في الأطفال أكثر من أو أل الأبحاث. أن 11 معارير المطلوبة للتحليل الأحصائي للدر اسات البحثية في الأطفال أكثر من أو أل أبحاث. مد نتج عن ذلك اربع و خمسون در اسة نهائية. ووجد أن تناول مكملات الزنك لها تأثير كبير علي يساوي سنتين في العمر كان في سبع در اسات إكلينيكية؟؟ . أن ٢٨ دراسة من ٤٠ (٣٠٧) تظهر أن تناول مكملات الزنك له تأثير إيجابي علي زيادة الطول في الأطفال أقل من ٥ سنوات و لذلك نوصي بتناول مكملات الزنك له تأثير إيجابي علي زيادة الطول في عمل دراسات أخرى في هذا المجال .

الكلمات المفتاحية: التقزم - الرضع – مكملات الزنك - الطول - الطفل

Gihan Fouad Ahmad, Hanaa Sabry Ahmed and Enas Sayed Abbas